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Abstract
Recent research has suggested that a range of psychological disorders may stem from a single 
underlying common factor, which has been dubbed the p-factor. This finding may spur a line 
of research in psychopathology very similar to the history of factor modeling in intelligence 
and, more recently, personality research, in which similar general factors have been proposed. 
We point out some of the risks of modeling and interpreting general factors, derived from the 
fields of intelligence and personality research. We argue that: (a) factor-analytic resolution, i.e., 
convergence of the literature on a particular factor structure, should not be expected in the 
presence of multiple highly similar models; and (b) the true underlying model may not be a 
factor model at all, because alternative explanations can account for the correlational structure 
of psychopathology.
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In recent years, general factor models have been proposed to explain the correlational 
structure of psychopathological data. This line of research advocates the hypothesis that 
a wide range of symptoms that arise in psychopathology and personality disorders are 
determined by the pervasive influence of a single latent variable. In particular, Caspi 
et al. (2014; and replicated by Laceulle, Vollebergh, & Ormel, 2015) proposed that the 
correlational structure of psychopathology may be explained by a general factor that 
underlies a wide variety of disorders. Caspi et al. refer to this general factor as the p-fac-
tor or p. Sharp et al. (2015) found similar results in a wide set of personality disorders, 
and argued in a parallel fashion that a general factor may underlie personality pathology; 
in fact, Sharp et al. suggested that their general factor might be the same as the p identi-
fied by Caspi et al.

These research efforts are based on a methodology and line of reasoning that will 
sound familiar to researchers in the domains of intelligence and personality research, 
where models involving a general factor have long been proposed to explain the correla-
tional structure of cognitive and personality tests, respectively (Musek, 2007; Rushton & 
Irwing, 2008; Spearman, 1904). In both fields, these factors (“g” and the “Big One” or 
General Factor of Personality [GFP], respectively) have been interpreted as reified causal 
entities that exist independent of the data and, by causing variation in their indicators, 
give rise to an observed correlational structure (Gould, 1996). This interpretation of gen-
eral factors has led researchers to search for genetic or biological properties that may 
play such a causal role (Detterman, 2002; Musek, 2007), a search that is now beginning 
to take hold in psychopathology (Pettersson, Larsson, & Lichtenstein, 2016). So far, this 
search has yielded no clear candidates that might instantiate these general factors in the 
brain.

The goal of research investigating the structure of psychopathology is to come to 
understand why disorders arise, and thus how to prevent and cure them. Charting the 
structure of psychopathology is thus a vitally important endeavor, so it is crucial to point 
out misunderstandings that arise when general factors are over-interpreted. Although the 
present paper mainly focuses on the analyses performed by Caspi et al. (2014), the argu-
ments apply to a broader line of research that started with Simms, Grös, Watson, and 
O’Hara (2008) and has included multiple research groups since then (Laceulle et  al., 
2015; Lahey et al., 2012; Patalay et al. 2015; Snyder, Young, & Hankin, 2016). All these 
researchers fit bi-factor models to psychopathology data to demonstrate support for a 
general factor. Here, we argue that: (a) factor-analytic resolution, that is, convergence of 
the literature on a particular factor structure, is unlikely to arise in the presence of multi-
ple nearly-equivalent models; and (b) the true underlying model may not be a factor 
model at all, because alternative explanations can account for the correlational structure 
of psychopathology. We follow this argument with several suggestions for future research 
on the structure of psychopathology.
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The problem of nearly-equivalent models

In advocating for a general factor, whether it is psychopathology, personality, or intelli-
gence, most research relies on comparing models that are nearly indistinguishable at a 
statistical level, but radically different in terms of interpretation. As a result, small differ-
ences in data due to sampling variability result in very different theories on the structure 
of psychological traits and abilities.

Near-equivalence of bi-factor and higher-order models

The bi-factor model of psychopathology is a special case of a hierarchical factor model,1 
in which all indicators load on a general factor, and several specific factors account for 
the remaining shared variance among subsets of items. Caspi et al. found that a bi-factor 
model and a correlated three-factor model “fit [their] data similarly well, with [the bi-
factor model] offering a slightly more parsimonious solution” (Caspi et  al., 2014, p. 
126),2 leading them to conclude that the general factor, p, is a “single dimension that 
represents the tendency to experience psychiatric problems as persistent and comorbid” 
(Caspi et al., 2014, p.131). The correlated three-factor model is equivalent to a higher-
order factor model in which subsets of indicators load onto lower-order factors that, in 
turn, load onto a general factor. As such, the model comparisons reported in Caspi et al. 
are equivalent to those that would have resulted from comparing their bi-factor model 
with a higher-order model.

Model fit in structural equation modeling (SEM) is measured by assessing how simi-
lar the observed variance–covariance matrix is to the one implied by a model. Exactly 
equivalent models lead to the exact same variance–covariance matrix, so fitting two 
equivalent models to any sample dataset will result in the same fit. Equivalent models 
cannot be distinguished on statistical grounds, even though they may imply very differ-
ent interpretations. Nearly equivalent models imply very similar variance–covariance 
matrices. While, in theory, these models can be distinguished statistically, the outcome is 
highly subject to sampling variability. For some nearly equivalent models, standard sta-
tistical fit indices such as the Akaike information criterion (AIC), Bayesian information 
criterion (BIC), and root mean square error of approximation (RMSEA) frequently fail 
to identify the true data-generating model. As we will show, the higher-order factor 
model and bi-factor model are nearly equivalent. Statistical comparisons of these two 
models lead to biased conclusions (Morgan, Hodge, Wells, & Watkins, 2015; Murray & 
Johnson, 2013).

Higher-order and hierarchical factor models imply very similar covariance matrices 
because they are mathematically closely related to each other. In fact, the higher-order 
factor model is equivalent to a special case of the hierarchical factor model (i.e., the class 
of higher-order factor models is nested in the class of hierarchical factor models, see 
Yung et al., 1999). Morgan et al. (2015) demonstrated an extensive overlap of fit values 
when comparing bi-factor models to higher-order factor models and correlated factor 
models. They even showed that when cases are selected from a population that was gen-
erated by a higher-order structure, approximate fit indices tend to incorrectly identify the 
bi-factor model as the best fitting model. Likewise, Murray and Johnson (2013) noted 
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that studies of cognitive ability tend to find that bi-factor models fit better. They con-
ducted a simulation study to evaluate that tendency, and found a substantial bias favoring 
the bi-factor model, even when the true structure underlying the data was a higher-order 
factor model. These and similar simulations have led multiple researchers to argue that, 
when comparing higher-order factor models and bi-factor models, the decision about 
which model to adopt should not rely on model fit (Bonifay, Lane, & Reise, 2016; 
Murray & Johnson, 2013).

Theoretical interpretation of bi-factor and higher-order models

While the higher-order and bi-factor model differ only slightly in fit, their theoretical 
implications are very different. Figure 1(a) shows a higher-order model, in which some 

Figure 1.  (a) Higher-order factor model, in which g represents a general factor; (b) bi-factor 
model: a specific kind of Hierarchical factor model (Yung et al., 1999), in which g represents a 
general factor.
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general factor, “g” (e.g., the p-factor), explains the shared variance of the lower-order 
factors (e.g., Internalizing, Externalizing, and Thought disorder). The lower-order fac-
tors, in turn, represent the entirety of the variance that is shared among their indicators. 
Figure 1(b) shows the bi-factor model, in which the specific factors, Internalizing, 
Externalizing, and Thought disorder, are no longer caused by the general factor but in 
contrast are orthogonal to the general factor. In this model, the specific factors explain 
the shared variance among items that remains after the effect of the general factor is 
partialled out. Thus, the specific factors in the two models account for very different 
parts of the variance shared among indicators.

Despite this difference in the reference of the specific factors, researchers tend to give 
them the same labels in both models (e.g., “Internalizing,” “Externalizing,” and 
“Thought”), suggesting that these specific factors are mapped onto the same psychologi-
cal constructs. When specific factors are given the same meaning, the general factor 
means something different as a result. Whereas in the bi-factor model, variance in p is 
hypothesized to be independent of Internalizing, Externalizing, and Thought disorders; 
in the higher-order factor model p is hypothesized to explain the correlations between 
Internalizing, Externalizing, and Thought disorders. Moreover, interpreting specific fac-
tors as referring to the same constructs in both models leads to different theories of how 
these constructs relate to each other, as well as to external variables. Thus, although both 
models contain a “general factor,” the posited mechanisms by which these respective 
factors relate to other factors in the model (and to external variables) are radically 
different.

Implications for factor-analytic resolution

In the preceding sections, we argued that: (a) the bi-factor and higher-order factor models 
cannot be reliably distinguished on the basis of statistical fit due to their near equivalence 
and (b) that despite their statistical near-equivalence, their interpretations diverge 
strongly. Thus, small differences due to sampling variation can lead to completely differ-
ent theories of what the general factor is. Because different models will fit best in differ-
ent studies, it seems unlikely that the field will arrive at a consensus on which model best 
reflects the structure of psychopathology.

This lack of consensus is evident in the fields of intelligence and personality research. 
In the intelligence literature, many studies have been dedicated to finding the “true” 
structure of general intelligence. Various models have been proposed to explain the 
structure of correlations found in cognitive ability data. Some of these modeling efforts 
result in a single general intelligence factor (“g”; Gustafsson, 1984), others have several 
correlated higher-order factors (Flanagan & McGrew, 1998; Lansman, Donaldson, Hunt, 
& Yantis, 1982), and some feature a bi-factor model structure (Gignac & Watkins, 2013). 
Although all of these purport to have found the best model of intelligence, the literature 
has not converged upon a single best model. When the structure of intelligence is mod-
eled as a higher-order model, g is conceptualized as a factor that is superordinate to the 
lower-order factors. By contrast, proponents of the bi-factor model for the structure of 
intelligence argue that g should be conceptualized as a breadth factor that is defined by a 
larger number of observed variables than the narrow group factors (Gignac, 2008).
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In personality psychology, a similar line of research has been pursued; competing fac-
tor models ranging from five correlated factors to one general personality factor (“the 
Big One” or “GFP”), as well as variations on these models, have been purported to 
explain the correlations between personality test responses (e.g., Digman, 1997; McCrae 
& Costa, 1987; Musek, 2007; Rushton & Irwing, 2008). This literature has also not con-
verged upon a single best model. Taken together, one should not expect factor-analytic 
resolution to arise when multiple similar models are fitted to correlational data, due to 
the highly similar covariance matrices such models imply.

Although the issue of equivalent and nearly equivalent models in latent variable mod-
els has been recognized for decades (Duncan, 1975; Raykov & Marcoulides, 2001), it is 
still not widely understood. As we noted above, every paper that has suggested a general 
factor of psychopathology has based their conclusions on a statistical comparison of 
nearly equivalent models. While the correlated factor and bi-factor models reflect very 
different theories on the structure of psychopathology, the models are statistically too 
similar to rely on model fit to decide which model to adopt.

The risk of affirming the consequent

Factor modeling allows researchers to test causal assumptions in the model based on the 
logic that if the model does not fit the data, some causal assumptions implied by the 
model must not hold (Bollen & Pearl, 2013). Including a general factor in the model 
implies the causal assumption that the shared variance among the items is due to a com-
mon cause. The logic of model testing has led many researchers to reify a general factor 
upon finding that a general factor model fits the data. In the following section, we argue 
that the existence of a general factor is not tested against the data because any dataset that 
features a positive manifold will necessarily support a general factor model, whether or 
not a general factor underlies the data.

The search for general factors

After the g-factor was proposed, many researchers tried to find a neural basis for general 
intelligence based on the belief that g is real and that, if it is real, it must have a biological 
basis (e.g., Detterman, 2002; Garlick, 2002; Gray & Thompson, 2004). Many cognitive 
abilities have been proposed to explain individual differences in g, including speed and 
efficiency of processing, working memory, and the capacity to deduce relationships 
(Detterman, 2002), as well as biological variables such as cortical thickness, the size of 
specific brain regions, or the overall grey matter in these brain regions (Deary, Penke, & 
Johnson, 2010). Data from twin and family studies have consistently provided support 
for the hypothesis that general intelligence is heritable and therefore must have a genetic 
component (Devlin, Daniels, & Roeder, 1997; Haworth et al., 2010; Jacobs et al., 2001). 
Alternative models that do not introduce a general factor to explain the covariation 
among cognitive abilities, however, do not preclude the finding that the shared variance 
among these cognitive abilities is correlated within twins. After all, as long as the under-
lying structure giving rise to these cognitive abilities is to some extent heritable, one will 
find that a general factor that comprises the shared variance among these cognitive 
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abilities correlates within twins. Despite the consistent support for the heritability of 
general intelligence in twin studies, not a single gene has been identified to be reliably 
associated with general intelligence (Payton, 2009). In personality research, Musek 
(2007) introduced the Big One and proposed that genes responsible for biological sys-
tems may give rise to this general factor of personality. Since then, the Big One has been 
re-labeled as the General Factor of Personality (GFP) by Rushton, Bons, and Hur (2008), 
and a similar search as in the g-factor literature has followed for the genetic underpin-
nings of the GFP (Loehlin & Martin, 2011; Rushton et  al., 2008; Veselka, Schermer, 
Petrides, & Vernon, 2009). In neither field have researchers succeeded in empirically 
identifying the abstract factors of factor analysis anywhere other than in factor analysis 
itself.

As in the g-factor and GFP literatures, the nascent p-factor literature exhibits a similar 
tendency to reify the general factor. For example, Sharp et al. (2015) found support for a 
general factor underlying a small set of personality disorders, and they suggested this 
factor might be the same factor as the broader p-factor identified by Caspi et al. (2014). 
This suggestion only makes sense if one interprets p as an entity that is external to the 
statistical model: If these factors do not refer to entities outside the statistical model, then 
they cannot refer to the same entity. Caspi et al. conclude that p “reflects meaningful dif-
ferences between persons on a single dimension that represents the tendency to experi-
ence psychiatric problems as persistent and comorbid” (Caspi et al., 2014, p. 131). They 
finish their paper by stating that “at a minimum, researchers should no longer assume a 
specific relation between the disorder they study and a biomarker/cause/consequence/
treatment without empirical verification. Rather, [their] finding suggests the default 
assumption must be that biomarkers/causes/consequences/treatments relate first to p” 
(Caspi et al., 2014, p. 134). Clearly, the suggestion that p mediates effects of biological 
variables on specific disorders does not make sense if p is just the shared variance among 
the disorders.

Just like for g and GFP, a similar search for a neural basis for p has begun in psycho-
pathology (Lahey, Van Hulle, Singh, Waldman, & Rathouz, 2011; Pettersson, Anckarsäter, 
Gillberg, & Lichtenstein, 2013; Pettersson et al., 2016). As with g, twin studies suggest 
that p is heritable, but a similar argument for g can be made: whatever structure explains 
the correlations between disorders in psychopathology, to the extent that this structure is 
heritable, it will manifest as a correlation across twins.

General factor model relies on positive manifold

The previous section showed that the statistical support for a p-factor has resulted in 
speculation about what the external referent of p would be, and the search for a genetic 
basis of p. Finding a fitting general factor model, however, does not provide support for 
the existence of a general factor that goes beyond the observation of a positive manifold 
in the data. To see why this is the case, it is important to observe that any general factor 
model relies statistically on the existence of a positive manifold, and that there are alter-
native explanations for a positive manifold that do not rely on the logic of factor mode-
ling. A positive manifold simply means that all variables are positively correlated with 
each other (or become positively correlated after variables are appropriately re-coded). 
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Given any such positive correlation matrix, all factor loadings and all covariances 
between factors in a simple structure factor analysis model (i.e., one in which indicators 
only load onto one latent factor) will be positive (Krijnen, 2004). Because all correlations 
between factors are positive, the same step can be repeated to model these factors with 
higher-order factors, again resulting in only positive factor loadings and factor correla-
tions; eventually, therefore, a single general factor will always be found at some “stra-
tum” of the factor hierarchy (Carroll, 1993). In sum, it is a mathematical necessity that 
whenever there is a positive manifold, factor analysis will result in a general factor.

Explanations for the positive manifold

Now, if the data are caused at some level by a single underlying common cause, the 
variance–covariance matrix will feature a positive manifold. But the reverse argument is 
not valid: finding a positive manifold does not entail a common cause. There are many 
alternative explanations for the existence of a positive manifold, several of which have 
been proposed in the literature on general intelligence (e.g., Van der Maas et al., 2006). 
Because alternative explanations exist, finding that a general factor model fits does not 
provide additional evidence that a general factor exists, over and above the initial obser-
vation of a positive manifold.

One such alternative explanation for the positive intercorrelations between cognitive 
tests is sampling theory (Bartholomew, Deary, & Lawn, 2009; Thomson, 1950; 
Thorndike, 1927). In sampling theory it is hypothesized that cognitive tasks require the 
use of multiple independent components or elements of the mind (so-called bonds),3 
such that each task is a multidimensional measure. Each cognitive test measures a group 
of these independent bonds, but the groups of bonds will overlap across tests. As a result, 
the cognitive tasks that are used to measure different cognitive abilities will be positively 
correlated because they draw on overlapping bonds, resulting in a positive manifold. 
Sampling theory is likely to explain at least some of the positive correlations among 
mental disorders, which show a clear pattern of overlap in the symptoms that are used to 
diagnose them. For example, Major Depressive Episode and Generalized Anxiety 
Disorder each feature insomnia, fatigue, concentration problems, and psychomotor agi-
tation as diagnostic criteria (American Psychiatric Association, 2013). Such patterns of 
overlap are present throughout the realm of psychopathology. Unsurprisingly, these pat-
terns of overlap explain part of the correlation structure between disorders; for example, 
Borsboom (2002) reported a correlation of .62 between the number of overlapping symp-
toms for any two disorders, and the empirical correlation found between them in empiri-
cal studies of comorbidity.

Van der Maas et al. (2006) offer a second alternative explanation to the positive mani-
fold in cognitive test scores, based on the biological concept of mutualism. In this per-
spective, cognitive ability is modeled analogously to the way ecosystems of lakes are 
modeled in aquatic ecology. Here, researchers seek to explain why some lakes flourish 
better than others, with a wider variety of life and higher water quality. Measuring vari-
ables such as the variety of life and quality of water in multiple lakes will likely lead to 
a collection of positive correlations—a positive manifold; lakes that have better water 
quality will have a wider variety of life. Biologists do not model such systems as a 
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common cause structure in which a single general factor of “lake health” is used to 
explain positive correlations, even though, as explained above, a general factor would no 
doubt emerge from such data. Instead, biologists rely on a more plausible explanation of 
such data: having high water quality allows for more variety of life, and more life will 
improve the quality of the water (Scheffer et al., 2009; Scheffer, Carpenter, Foley, Folke, 
& Walker, 2001). This concept is termed mutualism because it describes a system of 
mutually beneficial relationships between the causal factors that determine its dynamics. 
Cognitive systems could be viewed in a similar way; strength in one cognitive system 
(e.g., reading comprehension) improves one’s ability in another cognitive system (e.g., 
reasoning). Van der Maas et al. (2006) showed analytically as well as in a simulation 
study that such a system can lead to a positive manifold, even though no general factor 
is present.

The analogy to cognitive systems can be extended to systems of psychopathology  
as well (Borsboom, 2008; Cramer, Waldorp, van der Maas, & Borsboom, 2010;  
Schmittmann et al., 2013). Rather than modeling symptoms as consequences of a latent 
common disease, symptoms can be seen to influence each other; someone might not be 
able to concentrate as well because he or she is worrying a lot, and that person might 
worry a lot because a poor concentration lead to problems at work (Borsboom & Cramer, 
2013). The term mutualism may be less suitable for psychopathology, because many 
causal relationships might only be one-directional—insomnia leads to fatigue but fatigue 
might not lead to insomnia—but the overall interpretation is that problems lead to more 
problems (e.g., insomnia → concentration problems), and problems hardly ever solve 
other problems (e.g., feeling depressed !→ fewer panic attacks). These positive causal 
relations between symptoms may give rise to a positive manifold. Following this line of 
thought, psychopathological symptoms are modeled as active agents in networks of 
interacting components rather than passive indicators of latent variables.

In these networks, typically observed variables are represented by nodes that are con-
nected by edges (links) when two variables are conditionally dependent given other 
nodes in the network. When the variables are normally distributed, these conditional 
dependencies are reflected in the partial correlations between the variables. A network of 
such partial correlation coefficients is termed a Gaussian graphical model (GGM), and it 
has been shown that any SEM model can be characterized by an equivalent GGM model 
(Epskamp, Rhemtulla, & Borsboom, 2017). Thus, for any bi-factor model (e.g., Figure 
2(a)) there will be a statistically equivalent network model (e.g., Figure 2(b)) that 
explains the covariance matrix with direct relations rather than with a general factor. It is 
also possible to explain the positive manifold in psychopathology data with a model that 
includes both latent variables and direct relations between symptoms, but does not 
include a general factor. The Residual Network Model (RNM; Epskamp et al., 2017), is 
a model in which the residuals of a factor model form a GGM. Figure 2(c) shows an 
example of such a RNM.4 When the residual network is properly constrained (in this 
case, it would be expected to be low-rank), the RNM in Figure 2(c) can also be equiva-
lent to the bi-factor model in Figure 2(a). As a result, all three figures can, under certain 
constraints of the parameter space, be completely equivalent while featuring strikingly 
different causal interpretations. Network theory therefore, just like sampling theory, pro-
vides an alternative explanation for the positive manifold without a general factor.
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In sum, extracting a general factor does not adduce novel evidence for the existence 
of a general factor, if one already knows that the positive manifold holds—a finding that 
can be explained in multiple different ways. In the cases of Caspi et al. (2014) and Sharp 
et al. (2015), therefore, their model fitting exercises do not produce evidence for general 
factors that goes beyond the fact that we see a positive manifold in data on DSM disor-
ders; and this fact has been known for many years (Krueger, 1999).

Conclusions

We discussed a recent line of research in which bi-factor models are fitted to psychopa-
thology data to demonstrate support for p, the general factor of psychopathology (Caspi 
et  al., 2014; Laceulle et  al., 2015; Lahey et  al., 2012). Because analogous modeling 
strategies have been followed for over a century in the context of general intelligence 
research, we discussed the g-factor literature as well as some of the literature on general 
factors in personality to point out some of the risks in interpreting a general factor model 
as identifying a common cause that explains the positive manifold. We focused our dis-
cussion not on the specific models found by the abovementioned authors, but rather on 
their more general—and arguably more important—finding: psychopathology, like cog-
nitive ability and personality, features a positive manifold; correlations between symp-
toms are almost invariably positive.

As we have argued in this paper, such a positive manifold will allow some form of 
general factor model to fit the data by mathematical necessity. We emphasize that we do 
not regard the positive manifold as something trivial; the observation of a positive mani-
fold is certainly a remarkable observation that has proven to be a robust finding in many 
areas within psychology. Not only the positive manifold, but also the observation that 
some variables within this positive manifold form clusters of more strongly correlated 
variables, are robust findings in many fields (e.g., responses on mathematical items cor-
relate more strongly with each other than with responses on language items). Such phe-
nomena mandate the search for an explanatory model, and in many cases the factor 
model is a very fruitful candidate. There are, however alternative explanations for the 

Figure 2.  Three different models that can be equivalent to one another. (a) Bi-factor model; 
(b) network model; (c) Residual Network model.
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emergence of a positive manifold, and factor analysis does not choose between these 
alternatives. Instead, factor analysis will always explain the positive manifold with a 
general factor. Therefore, we already knew, before Caspi and colleagues even started 
their research, that they would come up with a general factor as a matter of mathematical 
necessity. We suggest that scientists in the field of psychopathology do not rush into the 
p-factor but also carefully explore alternatives for the structure of psychopathology that 
do not rely on the logic of factor modeling.

Factor modeling is a powerful method for measuring constructs that are not directly 
observable—e.g., factor analysis enables researchers to create a measurement model of 
constructs like working memory by observing the effects of working memory, such as 
performance on memory tasks. The problem we addressed in this paper is not the use of 
factor analysis for psychological data, but the risks of interpreting general factors of 
which it is more dubious whether such a construct exists as a causal entity. In such cases 
factor analysis is not used as a tool to measure unobserved constructs, but instead, factor 
analysis is used as a method to discover some inscrutable variable that explains as much 
as possible. Our aim is to show that the same care should be taken in interpreting the 
general p-factor as is now being carried out in intelligence (and, to some extent, person-
ality) research.

To do so, model comparison based on fit measures can be supplemented with theory 
on how the general factor relates to external factors or specific factors within the 
model, and preferably experimental or quasi-experimental interventions to test such 
relations. Additionally, insight into the structure of psychopathology might benefit 
from the comparison between factor models and models different from factor mode-
ling, instead of only comparing factor models within the paradigm of factor analysis. 
More generally, we propose to use all of the insights that can be gained with these dif-
ferent models (factor models, network models, or other models) and try to find ways to 
unify these different methods, instead of constraining ourselves to merely one sub-
population of models.
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Notes

1.	 Hierarchical factor models are models with multiple layers of orthogonal factors and simple 
structure within each layer (Yung, Thissen, & McLeod, 1999). The bi-factor model is a hier-
archical factor model with only two layers, of which one layer consists of a general factor on 
which all indicators load.
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2.	 Caspi et  al. (2014) reported that the correlated three-factor model fit was X²(df = 1018) = 
1737.159, CFI = .962, TLI = .958, RMSEA = .027 [.024,.029], while their bi-factor model fit 
was X²(df = 1012) = 1652.586, CFI = .966, TLI = .963, RMSEA = .025 [.023,.027]. We note that 
in terms of degrees of freedom, the bi-factor model appears to be the less parsimonious model.

3.	 Thomson does not specify these bonds any further but suggests that these bonds can be “iden-
tified by different readers with different entities” (Thomson, 1950, p. 307).

4.	 The connections between the residuals in Figure 2(c) should not be mistaken for double-
headed arrows, which would represent marginal residual correlations in SEM. Instead, these 
undirected edges indicate conditional residual correlations (partial correlations); also termed 
concentration (Dempster, 1972).
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