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We introduce the network model as a formal psychometric model, conceptualizing the covariance
between psychometric indicators as resulting from pairwise interactions between observable variables in
a network structure. This contrasts with standard psychometric models, in which the covariance between
test items arises from the influence of one or more common latent variables. Here, we present two gener-
alizations of the network model that encompass latent variable structures, establishing network modeling
as parts of the more general framework of structural equation modeling (SEM). In the first generalization,
we model the covariance structure of latent variables as a network. We term this framework latent network
modeling (LNM) and show that, with LNM, a unique structure of conditional independence relationships
between latent variables can be obtained in an explorative manner. In the second generalization, the residual
variance—covariance structure of indicators is modeled as a network. We term this generalization resid-
ual network modeling (RNM) and show that, within this framework, identifiable models can be obtained
in which local independence is structurally violated. These generalizations allow for a general modeling
framework that can be used to fit, and compare, SEM models, network models, and the RNM and LNM
generalizations. This methodology has been implemented in the free-to-use software package /vnet, which
contains confirmatory model testing as well as two exploratory search algorithms: stepwise search algo-
rithms for low-dimensional datasets and penalized maximum likelihood estimation for larger datasets. We
show in simulation studies that these search algorithms perform adequately in identifying the structure of
the relevant residual or latent networks. We further demonstrate the utility of these generalizations in an
empirical example on a personality inventory dataset.
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1. Introduction

Recent years have seen an emergence of network modeling in psychometrics (Borsboom,
2008; Schmittmann et al., 2013), with applications in clinical psychology (e.g., van Borkulo et
al., 2015, McNally et al., 2015, Fried et al.,2015), psychiatry (e.g., Isvoranu, van Borkulo, et al.,
2016b, Isvoranu, Borsboom, van Os, & Guloksuz, 2016a), health sciences (e.g., Kossakowski et
al., 2015), social psychology (e.g., Dalege et al., 2016, Cramer et al., 2012), and other fields (see
for a review of recent literature Fried & van Borkulo, 2016). This line of literature stems from
the network perspective of psychology (Cramer, Waldorp, van der Maas, & Borsboom, 2010), in
which noticeable macroscopic behavior—the co-occurrence of aspects of psychology such as cog-
nitive abilities, psychopathological symptoms, or a set of behaviors—is hypothesized to not be due
to the influence of unobserved common causes, such as general intelligence, psychopathological
disorders, or personality traits, but rather to emergent behavior in a network of interacting psycho-
logical, sociological, and biological components. Network models are used to gain insight into
this potentially high-dimensional interplay (Epskamp, Waldorp, Mottus, & Borsboom, 2016).
In practice, network models can be used as a sparse representation of the joint distribution of
observed indicators, and as such, these models show great promise in psychometrics by providing
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a perspective that complements latent variable modeling. Network modeling highlights variance
that is unique to pairs of variables, whereas latent variable modeling focuses on variance that
is shared across all variables (Costantini et al., 2015). As a result, network modeling and latent
variable modeling can complement—rather than exclude—one another.

In this paper, we introduce the reader to this field of network psychometrics (Epskamp, Maris,
Waldorp, & Borsboom, in press) and formalize the network model for multivariate normal data,
the Gaussian graphical model (GGM; Lauritzen, 1996), as a formal psychometric model. We
contrast the GGM to the structural equation model (SEM; Wright, 1921; Kaplan, 1921; 2000)
and show that the GGM can be seen as another way to approach modeling covariance structures
as is typically done in psychometrics. In particular, rather than modeling the covariance matrix,
the GGM models the inverse of a covariance matrix. The GGM and SEM are very closely related:
Every GGM model and every SEM model imply a constrained covariance structure. We make
use of this relationship to show that, through a reparameterization of the SEM model, the GGM
model can be obtained in two different ways: first, as a network structure that relates a number
of latent variables to each other, and second, as a network between residuals that remain given
a fitted latent variable model. As such, the GGM can be modeled and estimated in SEM, which
allows for network modeling of psychometric data to be carried out in a framework familiar to
psychometricians and methodologists. In addition, this allows for one to assess the fit of a GGM,
compare GGMs to one another and compare a GGM to a SEM model.

However, the combination of GGM and SEM allows for more than fitting network models.
As we will show, the strength of one framework can help overcome shortcomings of the other
framework. In particular, SEM falls short in that exploratory estimation is complicated and there
is a strong reliance on local independence, whereas the GGM falls short in that it assumes no
latent variables. In this paper, we introduce network models for latent covariances and for resid-
ual covariances as two distinct generalized frameworks of both the SEM and GGM. The first
framework, latent network modeling (LNM), formulates a network among latent variables. This
framework allows researchers to exploratively estimate conditional independence relationships
between latent variables through model search algorithms; this estimation is difficult in the SEM
framework due to the presence of equivalent models (MacCallum, Wegener, Uchino, & Fabrigar,
1993). The second framework, which we denote residual network modeling (RNM), formulates a
network structure on the residuals of a SEM model. With this framework, researchers can circum-
vent critical assumptions of both SEM and the GGM: SEM typically relies on the assumption of
local independence, whereas network modeling typically relies on the assumption that the covari-
ance structure among a set of the items is not due to latent variables at all. The RNM framework
allows researchers to estimate SEM models without the assumption of local independence (all
residuals can be correlated, albeit due to a constrained structure on the inverse residual covariance
matrix) as well as to estimate a network structure, while taking into account the fact that the
covariance between items may be partly due to latent factors.

While the powerful combination of SEM and GGM allows for confirmative testing of network
structures both with and without latent variables, we recognize that few researchers have yet
formulated strict confirmatory hypotheses in the relatively new field of network psychometrics.
Often, researchers are more interested in exploratively searching a plausible network structure.
To this end, we present two exploratory search algorithms that aim to discover the latent network
structure in LNM and the residual network structure in RNM. The first is a stepwise model search
algorithm that adds and removes edges of a network as long as fit is improved, and the second
uses penalized maximum likelihood estimation (Tibshirani, 1996) to estimate a sparse model. We
evaluate the performance of these search methods in four simulation studies. Finally, the proposed
methods have been implemented in a free-to-use R package, 1vnet, which we illustrate in an
empirical example on personality inventory items (Revelle, 2010).
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2. Modeling Multivariate Gaussian Data

Let y be the response vector of a random subject on P items.! We assume y is centered and
follows a multivariate Gaussian density:

y~Np(©0,%),

in which ¥ is a P x P variance—covariance matrix, estimated by some model-implied . Esti-
mating 3 is often done through some form of maximum likelihood estimation. If we measure N
independent samples of y, we can formulate the N x P matrix ¥ containing realization le as its
ith row. Let S represent the sample variance—covariance matrix of ¥:

1
S=—VY'y.
N—1

In maximum likelihood estimation, we use § to compute and minimize —2 times the log-likelihood
function to find ¥ (Lawley, 1940; Joreskog, 1967; Jacobucci, Grimm, & McArdle,1940; 1967;
2016):

min [log det (fl) + Trace (Sf}il) — log det (S‘) — P] . (1)
z

To optimize this expression, 3 should be estimated as closely as possible to S and perfect fit is
obtained if T=5A properly identified model with the same number of parameters (K) used
to form ¥ as there are unique elements in § (P (P + 1)/2 parameters) will lead to $ = S and
therefore a saturated model. The goal of modeling multivariate Gaussian data is to obtain some
model for £ with positive degrees of freedom, K < P(P +1)/2,in which 3 resembles S closely.

2.1. Structural Equation Modeling

In confirmatory factor analysis (CFA), y is typically assumed to be a causal linear effect of
a set of M centered latent variables, 7, and independent residuals or error, €:

y=An+e.

Here, A represents a P x M matrix of factor loadings. This model implies the following model
for X:
S =A¥A' +O, @)

in which ¥ = Var (n) and ® = Var (¢). In structural equation modeling (SEM), Var () can
further be modeled by adding structural linear relations between the latent variables:>

n=Bn+¢,

1 Throughout this paper, vectors will be represented with lowercase boldfaced letters and matrices will be denoted by
capital boldfaced letters. Roman letters will be used to denote observed variables and parameters (such as the number of
nodes), and Greek letters will be used to denote latent variables and parameters that need to be estimated. The subscript i
will be used to denote the realized response vector of subject 7, and omission of this subscript will be used to denote the
response of a random subject.

2 We make use here of the convenient all- y notation and do not distinguish between exogenous and endogenous latent
variables (Hayduk, 1987).
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in which ¢ is a vector of residuals and B is an M x M matrix of regression coefficients. Now, )
can be more extensively modeled as:

S=AI-B)'wI-B)'"TAT +0, 3)

in which now W = Var (¢). This framework can be used to model direct causal effects between
observed variables by setting A = I and ® = O, which is often called path analysis (Wright,
1934).

The © matrix is, like S and S, a P x P matrix; if @ is fully estimated—contains no restricted
elements—then @ alone constitutes a saturated model. Therefore, to make either (2) or (3) iden-
tifiable, ® must be strongly restricted. Typically, ® is set to be diagonal, a restriction often
termed local independence (Lord, Novick, & Birnbaum, 1968; Holland & Rosenbaum, 1986),
because indicators are independent of each other after conditioning on the set of latent variables.
To improve fit, select off-diagonal elements of ® can be estimated, but systematic violations of
local independence—many nonzero elements in ®@—are not possible as that will quickly make
(2) and (3) saturated or even over-identified. More precisely, ® cannot be fully populated—some
elements of ® must be set to equal zero—when latent variables are used. An element of ® being
fixed to zero indicates that two variables are locally independent after conditioning on the set of
latent variables. As such, local independence is a critical assumption in both CFA and SEM; if
local independence is systematically violated, CFA and SEM will never result in correct models.

The assumption of local independence has led to critiques of the factor model and its usage
in psychology; local independence appears to be frequently violated due to direct causal effects,
semantic overlap, or reciprocal interactions between putative indicators of a latent variable (Bors-
boom, 2008, Cramer et al., 2010, Borsboom, Cramer, Schmittmann, Epskamp, & Waldorp, 2011,
Cramer et al., 2012, Schmittmann et al., 2013). In psychopathology research, local independence
of symptoms given a person’s level of a latent mental disorder has been questioned (Borsboom &
Cramer, 2013). For example, three problems associated with depression are “fatigue,” “concen-
tration problems,” and “rumination.” It is plausible that a person who suffers from fatigue will
also concentrate more poorly, as a direct result of being fatigued and regardless of his or her level
of depression. Similarly, rumination might lead to poor concentration. In another example, Kos-
sakowski et al. (2015) describe the often-used SF-36 questionnaire (Ware Jr & Sherbourne, 1992)
designed to measure health related quality of life. The SF-36 contains items such as “can you walk
for more than one kilometer” and “can you walk a few hundred meters.” Clearly, these items can
never be locally independent after conditioning on any latent trait, as one item (the ability to walk
a few hundred meters) is a prerequisite for the other (walking more than a kilometer). In typical
applications, the excessive covariance between items of this type is typically left unmodeled and
treated instead by combining items into a subscale or total score that is subsequently subjected
to factor analysis; of course, however, this is tantamount to ignoring the relevant psychometric
problem rather than solving it.

Given the many theoretically expected violations of local independence in psychometric
applications, many elements of ® in both (2) and (3) should ordinarily be freely estimated.
Especially when violations of local independence are expected to be due to causal effects of
partial overlap, residual correlations should not be constrained to zero; in addition, a chain of
causal relationships between indicators can lead to all residuals to become correlated. Thus,
even when latent factors cause much of the covariation between measured items, fitting a latent
variable model that involves local independence may not fully account for correlation structure
between measured items. Of course, in practice, many psychometricians are aware of this problem,
which is typically addressed by freeing up correlations between residuals to improve model fit.
However, this is usually done in an ad hoc fashion, on the basis of inspection of modification
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FIGURE 1.
Example of a pairwise Markov random field model. Edges in this model indicate pairwise interactions and are drawn using
undirected edges to distinguish from (bidirectional) covariances. Rather than a model for marginal associations (such as a
network indicating covariances), this is a model for conditional associations. The network above encodes that Y] and Y3
are independent after conditioning on Y;. Such a model allows all three variables to correlate while retaining one degree
of freedom (the model only has two parameters).

indices and freeing up error covariances one by one, which is post hoc, suboptimal, and involves
an uncontrolled journey through the model space. As a result, it is often difficult to impossible to
tell how exactly authors arrived at their final reported models. As we will show later in this paper,
this process can be optimized and systematized using network models to connect residuals on top
of a latent variable structure.

2.2. Network Modeling

Recent authors have suggested that the potential presence of causal relationships between
measured variables may allow the explanation of the covariance structure without the need
to invoke any latent variables (Borsboom, 2008; Cramer et al., 2010; Borsboom et al., 2011;
Schmittmann et al., 2013). The interactions between indicators can instead be modeled as a net-
work, in which indicators are represented as nodes that are connected by edges representing pair-
wise interactions. Such interactions indicate the presence of covariances that cannot be explained
by any other variable in the model and can represent—possibly reciprocal—causal relationships.
Estimating a network structure on psychometric data is termed network psychometrics (Epskamp
et al., in press). Such a network of interacting components can generate data that fit factor models
well, as is commonly the case in psychology. van der Maas et al. (2006) showed that the positive
manifold of intelligence—which is commonly explained with the general factor for intelligence,
g——can emerge from a network of mutually benefiting cognitive abilities. Borsboom et al. (2011)
showed that a network of psychopathological symptoms, in which disorders are modeled as clus-
ters of symptoms, could explain comorbidity between disorders. Furthermore, Epskamp et al. (in
press) showed that the Ising model for ferromagnetism (Ising, 1925), which models magnetism as
a network of particles, is equivalent to multidimensional item response theory (Reckase, 2009).

In network psychometrics, psychometric data are modeled through directed or undirected
networks. Directed networks are equivalent to path analysis models. For modeling undirected
networks, pairwise Markov random fields (Lauritzen, 1996; Murphy, 2012) are used. In these
models, each variable is represented by a node, and nodes are connected by a set of edges. If
two nodes, y; and y, are not connected by an edge, then this means they are independent after
conditioning on the set of all other nodes, y_(j'k). Whenever two nodes cannot be rendered
independent conditional on the other nodes in the system, they are said to feature in a pairwise
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interaction, which is represented by an undirected edge—an edge with no arrows—to contrast
such an effect from covariances typically represented in the SEM literature with bidirectional
edges. Figure 1 represents such a network model, in which nodes y; and y3 are independent after
conditioning on node y,. Such a model can readily arise from direct interactions between the
nodes. For example, this conditional independence structure would emerge if y, is a common
cause of y; and y3, or if y> is the mediator in a causal path between y; and y3. In general,
it is important to note that pairwise interactions are not mere correlations; two variables may
be strongly correlated but unconnected (e.g., when both are caused by another variable in the
system) and they may be uncorrelated but strongly connected in the network (e.g., when they
have a common effect in the system). For instance, in the present example the model does not
indicate that y; and y3 are uncorrelated, but merely indicates that any correlation between y;
and y3 is due to their mutual interaction with y,; a network model in which either directly or
indirectly connected paths exist between all pairs of nodes typically implies a fully populated
(nonzero elements) variance—covariance matrix.

In the case of multivariate Gaussian data, this model is termed the Gaussian graphical model
(GGM; Lauritzen, 1996). Here, the partial correlation coefficient is sufficient to test the degree of
conditional independence of two variables after conditioning on all other variables; if the partial
correlation coefficient is zero, there is conditional independence and hence no edge in the network.
As such, partial correlation coefficients can directly be used in the network as edge weights, the
strength of connection between two nodes.? Such a network is typically encoded in a symmetrical
and real valued p x p weight matrix, 2, in which element o j; represents the edge weight between
node j and node k:

Cor <yj, Vi | y_(j’k)> =wj; = wgj.

The partial correlation coefficients can be directly obtained from the inverse of variance—
covariance matrix X, also termed the precision matrix K (Lauritzen, 1996):

Kjk

NCTNGT

Thus, element « j; of the precision matrix is proportional to the partial correlation coefficient
of variables y; and y, after conditioning on all other variables. For this reason, elements of
the inverse variance—covariance matrix model the unique association between two variables—
also termed the concentration of two variables—whereas elements of the variance—covariance
matrix model the marginal covariance of two variables. By modeling conditional rather than
marginal covariances, degrees of freedom can be obtained while not assuming any two variables
are marginally independent (Dempster, 1972).

Since obtaining partial correlation coefficients from the inverse variance—covariance matrix
simply involves standardizing the precision matrix, we propose the following model:*

Cor ()’js Vi | yf(j’b) =

1

T=K =Ad-9'A, “4)

1

in which A is a diagonal matrix with §;; = «..* and € has zeroes on the diagonal. This model
allows for confirmative testing of the GGM structures on psychometric data. Furthermore, the

3 A saturated GGM is also called a partial correlation network because it contains the sample partial correlation
coefficients as edge weights.

4 To our knowledge, the GGM has not yet been framed in this form. We chose this form because it allows for clear
modeling and interpretation of the network parameters.
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model can be compared to a saturated model (fully populated off-diagonal values of €2) and the
independence model (2 = 0), allowing one to obtain x? fit statistics as well as fit indices such
as the RMSEA (Browne & Cudeck, 1992) and CFI (Bentler, 1990). Such methods of assessing
model fit have not yet been used in network psychometrics.

Similar to CFA and SEM, the GGM relies on a critical assumption; namely, that covariances
between observed variables are not caused by any latent or unobserved variable. If we estimate a
GGM in a case where, in fact, a latent factor model was the true data generating structure, then
generally we would expect the GGM to be saturated—i.e., there would be no missing edges in
the GGM (Chandrasekaran, Parrilo, & Willsky, 2012). A missing edge in the GGM indicates
the presence of conditional independence between two indicators given all other indicators; we
do not expect indicators to become independent given subsets of other indicators (see also Ellis
& Junker, 1997; Holland & Rosenbaum, 1986). Again, this critical assumption might not be
plausible. While variables such as “Am indifferent to the feelings of others” and “Inquire about
others’ well-being” quite probably interact with each other, it might be far-fetched to assume that
no unobserved variable, such as a personality trait, in part also causes some of the variance in
responses on these items.

3. Generalizing Factor Analysis and Network Modeling

We propose two generalizations of both SEM and the GGM that both allow the modeling of
network structures in SEM. In the first generalization, we adopt the CFA> decomposition in (2)
and model the variance—covariance matrix of latent variables as a GGM:

U =Ay I -Qu) 'Ay.

This framework can be seen as modeling conditional independencies between latent variables not
by directed effects (as in SEM) but as an undirected network. As such, we term this framework
latent network modeling (LNM).

In the second generalization, we adopt the SEM decomposition of the variance—covariance
matrix in (3) and allow the residual variance—covariance matrix ® to be modeled as a GGM:

®=Ap - Q@)_l Ap.

Because this framework conceptualizes associations between residuals as pairwise interactions,
rather than correlations, we term this framework residual network modeling (RNM). Using this
framework allows—as will be described below—for a powerful way of fitting a confirmatory
factor structure even though local independence is systematically violated and all residuals are
correlated.

Figure 2 shows four different examples of possible models that are attainable under the
SEM, LNM and RNM frameworks. Panel (a) shows a typical SEM model in which one latent
variable functions as a common cause of two others. Panel (b) shows a network model which
can be estimated using both the RNM and the LNM frameworks. Panel (c) shows a completely
equivalent LNM model to the SEM model of Panel (a) in which the direction of effect between
latent variables is not modeled. Finally, Panel (d) shows a model in which three exogenous latent
variables underlie a set of indicators of which the residuals form a network. The remainder of
this section will describe RNM and LNM in more detail and will outline the class of situations in
which using these models is advantageous over CFA or SEM.

5 We use the CFA framework instead of the SEM framework here as the main application of this framework is in
exploratively estimating relationships between latent variables.
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3.1. Latent Network Modeling

The LNM framework models the latent variance—covariance matrix of a CFA model as a
GGM:
T =AAy I —Qu) 'AgAT + 0. 5)

This allows researchers to model conditional independence relationships between latent variables
without making the implicit assumptions of directionality or acyclicness. In SEM, B is typically
modeled as a directed acyclic graph (DAG), meaning that elements of B can be represented by
directed edges, and following along the path of these edges, it is not possible to return to any node
(latent variable). The edges in such a DAG can be interpreted as causal, and in general, they imply
a specific set of conditional independence relationships between the nodes (Pearl, 2000).

While modeling conditional independence relationships between latent variables as a DAG is
a powerful tool for testing strictly confirmatory hypotheses, it is less useful for more exploratory
estimation. Though there have been recent advances in exploratory estimation of DAGs within
an SEM framework (e.g., Gates & Molenaar, 2012, Rosa, Friston, 2012), many equivalent DAGs
can imply the same conditional independence relationships and thus fit the data equally well even
though their causal interpretation can be strikingly different (MacCallum et al., 1993). Further-
more, the assumption that the generating model is acyclic—which, in practice, often is made on
purely pragmatic grounds to identify a model—is problematic in that much psychological behav-
ior can be assumed to have at least some cyclic and complex behavior and feedback (Schmittmann
et al., 2013). Thus, the true conditional independence relationships in a dataset can lead to many
equivalent compositions of B, and possibly none of them are the true model.

In psychometrics and SEM, the GGM representation has not been very prominent, even
though it has some manifest benefits over the attempt to identify DAGs directly. For example,
by modeling conditional independence relationships between latent variables as a GGM, many
relationships can be modeled in a simpler way as compared to a DAG. In addition, in the GGM each
set of conditional independence relations only corresponds to one model: there are no equivalent
GGMs with the same nodes. Figure 3 shows a comparison of several conditional independence
relations that can be modeled equivalently or not by using a GGM or by using a DAG. Panel (a)
and Panel (b) show two DAGs that represent the same conditional independence relations, y; L
v3 | ¥2, which can both be represented by the same GGM shown in Panel (e) and Panel (f). There
are some conditional independence relations that a GGM cannot represent in the same number of
parameters as a DAG; Panel (c) shows a collider structure that cannot be exactly represented by a
GGM (the best fitting GGM would feature three edges instead of two). On the other hand, there
are also conditional independence relationships that a GGM can represent and a DAG cannot;
the cycle of Panel (h) cannot be represented by a DAG. Further equivalences and differences
between GGMs and DAGs are beyond the scope of this paper, but haven been well described in
the literature (e.g., chapter 3 of Lauritzen, 1996; Koller & Friedman, 2009; Kolaczyk, 2009). In
sum, the GGM offers a natural middle ground between zero-order correlations and DAGs: every
set of zero-order correlations implies exactly one GGM, and every DAG implies exactly one
GGM. In a sense, the road from correlations to DAGs (including hierarchical factor models) thus
always must pass through the realm of GGMs, which acts as a bridge between the correlational
and causal worlds.

Because there are no equivalent undirected models possible, LNM offers a powerful tool
for exploratory estimation of relationships between latent variables. For example, suppose one
encounters data generated by the SEM model in Fig. 2, Panel (a). Without prior theory on the
relations between latent variables, exploratory estimation on this dataset would lead to three
completely equivalent models: the one shown in Fig. 2, Panel (c), and two models in which the
common cause instead is the middle node in a causal chain. As the number of latent variables
increases, the potential number of equivalent models that encode the same conditional indepen-
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FIGURE 2.
a Structural equation modeling. b Network modeling. ¢ Latent network modeling. d Residual network modeling. Exam-
ples of possible models under four different modeling frameworks. Circular nodes indicate latent variables, square nodes
indicate manifest variables and gray nodes indicate residuals. Directed edges indicate factor loadings or regression param-
eters and undirected edges indicate pairwise interactions. Note that such undirected edges do not indicate covariances,
which are typically denoted with bidirectional edges. Replacing covariances with interactions is where the network models
differ from typical SEM.

dence relationships grows without bound. The LNM model in Panel (c) of Fig. 2 portrays the same
conditional independence relationship as the SEM model in Panel (a) of Fig. 2, while having no
equivalent model. Exploratory estimation could easily find this model and portrays the retrieved
relationship in a clear and unambiguous way.

A final benefit of using LNM models is that they allow network analysts to construct a network
while taking measurement error into account. So far, networks have been constructed based on
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FIGURE 3.
Equivalent models between directed acyclic graphs (DAG; top) and Gaussian graphical models (GGM; bottom). Each
column of graphs show two models that are equivalent. a, b, e and f all represent the same conditional independence
structure: Yy and Y3 are independent after conditioning on Y. ¢ Y7 and Y3 are marginally independent even though
they both are correlated with Y», a structure that cannot be represented in a GGM with only two edges. h Y] and Y3 are
independent after conditioning on the set ¥, and Y4, which cannot be represented with a DAG of four edges.

single indicators only and no attempt has been made to remediate measurement error. By forming
a network on graspable small concepts measured by a few indicators, the LNM framework can
be used to control for measurement error.

3.2. Residual Network Modeling
In the RNM framework, the residual structure of SEM is modeled as a GGM:

S=AU-B) 'WI-B)'"TAT+Ae I -Qe) ! Ae. (6)

This modeling framework conceptualizes latent variable and network modeling as two sides of
the same coin, and offers immediate benefits to both. In latent variable modeling, RNM allows
for the estimation of a factor structure (possibly including structural relationships between the
latent variables), while having no uncorrelated errors and thus no local independence. The error-
correlations, however, are still highly structured due to the residual network structure. This can be
seen as a compromise between the ideas of network analysis and factor modeling; while we agree
that local independence is plausibly violated in many psychometric tests, we think the assumption
of no underlying latent traits and therefore a sparse GGM may often be too strict. For network
modeling, RNM allows a researcher to estimate a sparse network structure while taking into
account that some of the covariation between items was caused by a set of latent variables. Not
taking this into account would lead to a saturated model (Chandrasekaran et al., 2012), whereas
the residual network structure can be sparse.

To avoid confusion between residual correlations, we will denote edges in Qg residual
interactions. Residual interactions can be understood as pairwise linear effects, possibly due to
some causal influence or partial overlap between indicators that is left after controlling for the
latent structure. Consider again the indicators for agreeableness “Am indifferent to the feelings
of others” and “Inquire about others’ well-being.” It seems clear that we would not expect these
indicators to be locally independent after conditioning on agreeableness; being indifferent to
the feelings of others will cause one to not inquire about other’s well-being. Thus, we could
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expect these indicators to feature a residual interaction; some degree of correlation between these
indicators is expected to remain, even after conditioning on the latent variable and all other
indicators in the model.

The RNM framework in particular offers a new way of improving the fit of confirmatory factor
models. In contrast to increasingly popular methods such as exploratory SEM (ESEM; Marsh,
Morin, Parker, & Kaur, 2014) or LASSO regularized SEM models (Jacobucci et al., 2016), the
RNM framework improves the fit by adding residual interactions rather than allowing for more
cross-loadings. The factor structure is kept exactly intact as specified in the confirmatory model.
Importantly, therefore, the interpretation of the latent factor does not change. This can be highly
valuable in the presence of a strong theory on the latent variables structure underlying a dataset
even in the presence of violations of local independence.

4. Exploratory Network Estimation

Both the LNM and RNM modeling frameworks allow for confirmative testing of network
structures. Confirmatory estimation is straightforward and similar to estimating SEM models,
with the exception that instead of modeling ¥ or ® now the latent network Qy or Qg is modeled.
Furthermore, both modeling frameworks allow for the confirmatory fit of a network model. In
LNM, a confirmatory network structure can be tested by setting A = I and ® = O; in RNM, a
confirmatory network model can be tested by omitting any latent variables. We have developed
the R package lvnet,® which utilizes OpenMx (Neale et al., 2016) for confirmative testing of
RNM and LNM models (as well as a combination of the two). The 1vnet function can be used
for this purpose by specifying the fixed and the free elements of model matrices. The package
returns model fit indices (e.g., the RMSEA, CFI and X2 value), parameter estimates, and allows
for model comparison tests.

Often the network structure, either at the residual or the latent level, is unknown and needs to
be estimated. To this end, the package includes two exploratory search algorithms described below:
stepwise model search and penalized maximum likelihood estimation. For both model frameworks
and both search algorithms, we present simulation studies to investigate the performance of
these procedures. As is typical in simulation studies investigating the performance of network
estimation techniques, we investigated the sensitivity and specificity (van Borkulo et al., 2014).
These measures investigate the estimated edges versus the edges in the true model, with a “positive”
indicating an estimated edge and a “negative” indicating an edge that is estimated to be zero.
Sensitivity, also termed the true positive rate, gives the ratio of the number of true edges that were
detected in the estimation versus the total number of edges in the true model:

o # True positives
Sensitivity =

# True positives + # Of false negatives

Specificity, also termed the true negative rate, gives the ratio of true missing edges detected in the
estimation versus the total number of absent edges in the true model:

# True negatives

Specificity =
P Y # True negatives + # False positives

The specificity can be seen as a function of the number of false positives: a high specificity
indicates that there were not many edges detected to be nonzero that are zero in the true model.

6 Developmental version: http://www.github.com/sachaepskamp/lvnet; stable version: https://cran.r-project.org/
package=lvnet.
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To favor degrees of freedom, model sparsity, and interpretability, specificity should be high all-
around—estimation techniques should not result in many false positives—whereas sensitivity
should increase as a function of the sample size.

4.1. Simulating Gaussian Graphical Models

In all simulation studies reported here, networks were constructed in the same way as done
by Yin and Li (2011) in order to obtain a positive definite inverse-covariance matrix K. First, a
network structure was generated without weights. Next, weights were drawn randomly from a
uniform distribution between 0.5 and 1 and made negative with 50% probability. The diagonal
elements of K were then set to 1.5 times the sum of all absolute values in the corresponding row,
or 1 if this sum was zero. Next, all values in each row were divided by the diagonal value, ensuring
that the diagonal values become 1. Finally, the matrix was made symmetrical by averaging the
lower and upper triangular elements. In the chain graphs used in the following simulations, this
algorithm created networks in which the nonzero partial correlations had a mean of 0.33 and a
standard deviation of 0.04.

4.2. Stepwise Model Search

In exploratory search, we are interested in recovering the network structure of either Qy
in LNM or Qg in RNM. This can be done through a stepwise model search, based either on
x? difference tests (Algorithm 1) or on minimization of some information criterion (Algorithm
2) such as the Akaike information criterion (AIC), Bayesian information criterion (BIC), or the
extended Bayesian information criterion (EBIC; Chen & Chen, 2008) which is now often used in
network estimation (van Borkulo et al., 2014, Foygel & Drton, 2010). In LNM, removing edges
from Qg cannot improve the fit beyond that of an already fitting CFA model. Hence, model
search for Qy should start at a fully populated initial setup for Qy. In RNM, on the other hand,
a densely populated Qg would lead to an over-identified model, and hence the stepwise model
search should start at an empty network Qg = O. The function lvnetSearch in the lvnet
package can be used for both search algorithms.

Algorithm 1

Stepwise network estimation by x2 difference testing.

Start with initial setup for
repeat
for all Unique elements of Q do
Remove edge if present or add edge if absent
Fit model with changed edge
end for
if Adding an edge significantly improves fit (¢ = 0.05) then
Add edge that improves fit the most
else if Removing an edge does not significantly worsen fit (« = 0.05) then
Remove edge that worsens fit the least
end if
until No added edge significantly improves fit and removing any edge significantly worsens fit
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FIGURE 4.
Model used in simulation study 1: stepwise model search in latent network modeling. Four latent variables were each
measured by three items. Latent variables covary due to the structure of a latent Gaussian graphical model in which
edges indicate partial correlation coefficients. This model has the form of a chain graph, which cannot be represented in
a structural equation model. Factor loadings, residual variances, and latent variances were set to 1, and the latent partial
correlations had an average of 0.33 with a standard deviation of 0.04.

Algorithm 2
Stepwise network estimation by AIC, BIC or EBIC optimization.

Start with initial setup for Q
repeat
for all Unique elements of Q do
Remove edge if present or add edge if absent
Fit model with changed edge
end for
if Any changed edge improved AIC, BIC or EBIC then
Change edge that improved AIC, BIC or EBIC the most
end if
until No changed edge improves AIC, BIC or EBIC

4.2.1. Simulation Study 1: Latent Network Modeling We performed a simulation study to
assess the performance of the above mentioned stepwise search algorithms in LNM models.
Figure 4 shows the LNM model under which we simulated data. In this model, four latent factors
with three indicators each were connected in a latent network. The latent network was a chain
network, leading all latent variables to be correlated according to a structure that cannot be
represented in SEM. Factor loadings and residual variances were set to 1, and the network weights
were simulated as described in Sect. 4.1. The simulation study followed a 5 x 4 design: the
sample size was varied between 50, 100, 250, 500, and 1000 to represent typical sample sizes
in psychological research, and the stepwise evaluation criterion was either x? difference testing,
AIC, BIC, or EBIC (using a tuning parameter of 0.5). Each condition was simulated 1000 times,
resulting in 20,000 total simulated datasets.

Figure 5 shows the results of the simulation study. Data are represented in standard boxplots
(McGill, Tukey, & Larsen, 1978): the box shows the 25th, 50th (median), and 75th quantiles, the
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FIGURE 5.

Simulation results of simulation study 1: stepwise model search in latent network modeling. Each condition was replicated
1000 times, leading to 20,000 total simulated datasets. High sensitivity indicates that the method is able to detect edges
in the true model, and high specificity indicates that the method does not detect edges that are zero in the true model.

whiskers range from the largest values in 1.5 times the inter-quantile range (75th—25th quantile),
and points indicate outliers outside that range. In each condition, we investigated the sensitivity and
specificity. The top panel shows that sensitivity improves with sample size, with AIC performing
best and EBIC worst. From sample sizes of 500 and higher all estimation criterion performed well
in retrieving the edges. The bottom panel shows that specificity is generally very high, with EBIC
performing best and AIC worst. These results indicate that the stepwise procedure is conservative
and prefers simpler models to more complex models; missing edges are adequately detected, but
present edges in the true model might go unnoticed except in larger samples. With sample sizes
over 500, all four estimation methods show both a high sensitivity and specificity.

4.2.2. Simulation Study 2: Residual Network Modeling We conducted a second simulation
study to assess the performance of stepwise model selection in RNM models. Figure 7 shows
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FIGURE 6.
Model used in simulation study 2: stepwise model search in residual network modeling. Two latent variables were each
measured by five items; a Gaussian graphical model, in which edges indicate partial correlation coefficients, leads to all
residuals to be correlated due to a chain graph between residuals, which cannot be represented in a structural equation
model. Factor loadings, residual variances and latent variances were set to 1, the factor covariance was set to 0.25, and
the latent partial correlations had an average of 0.33 with a standard deviation of 0.04.

the model under which data were simulated: two latent variables with 5 indicators each. The
residual network was constructed to be a chain graph linking a residual of an indicator of one
latent variable to two indicators of the other latent variable. This structure cannot be represented
by a DAG and causes all residuals to be connected, so that ® is fully populated. Factor loadings
and residual variances were set to 1, the factor covariance was set to 0.25, and the network weights
were simulated as described in Sect. 4.1.

The simulation study followed a 5 x 4 design; sample size was again varied between 50, 100,
250, 500, and 1000, and models were estimated using either X2 significance testing, AIC, BIC,
or EBIC. Factor loadings and factor variances were set to 1 and the factor correlation was set to
0.25. The weights in Qg were chosen as described in Sect. 4.1. Each condition was simulated
1000 times, leading to 20,000 total datasets.

Figure 7 shows the results of the simulation study. The top panel shows that sensitivity
increases with sample size and performs best when using AIC as the criterion. BIC performed
comparably in sensitivity to x? testing and EBIC performed the worst. The bottom panel shows
that specificity was very high for all sample sizes and all criteria, with EBIC performing best
and AIC worst. These results indicate that the number of false positives is very low and that the
method is on average well capable of discovering true edges for sample size larger than 250. In
sum, all four criteria perform well with EBIC erring on the side of caution and AIC erring on the
side of discovery.

4.3. LASSO Regularization

While the stepwise model selection algorithms perform well in retrieving the correct network
structure, they are very slow when the number of nodes in the network increases (e.g., more
than 10 nodes). This is particularly important in the context of RNM, in which the number of
indicators can be larger than 10 even in small models. A popular method for fast estimation of
high-dimensional network structures is by applying the least absolute shrinkage and selection
operator (LASSO; Tibshirani, 1996). LASSO regularization has also recently been introduced in
the SEM literature (Jacobucci et al., 2016) as a method for obtaining sparser structures of A and
B. In the LASSO, instead of optimizing the likelihood function as described in (1), a penalized
likelihood is optimized (Jacobucci et al., 2016):
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Simulation results of simulation study 2: stepwise model search in residual network modeling. Each condition was
replicated 1000 times, leading to 20,000 total simulated datasets. High sensitivity indicates that the method is able to
detect edges in the true model, and high specificity indicates that the method does not detect edges that are zero in the
true model.

n;:jn [log det (f)) + Trace (Sf}_1> — log det (S‘) - P+ vPenalty] , @)

in which v denotes a tuning parameter controlling the level of penalization. The penalty here is
taken to be the sum of absolute parameters:

Penalty = Z lwijl,

<i,j>

in which w;; denotes an element from either Qy or Qg. Other penalty functions may be used as
well—such as summing the squares of parameter estimates (ridge regression; Hoerl & Kennard,
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1970) or combining both absolute and squared values (elastic net; Zou & Hastie, 2005)—but these
are not currently implemented in 1vnet. The benefit of the LASSO is that it returns models that
perform better in cross-validation. In addition, the LASSO yields sparse models in which many
relationships are estimated to be zero.

Algorithm 3

LASSO estimation for exploratory network search.

for all Sequence of tuning parameters vy, vo, ... do
Estimate LASSO regularized model using given tuning parameter
Count the number of parameters for which the absolute estimate is larger than €
Determine information criterion (AIC, BIC or EBIC) given fit and number of parameters
end for
Select model with best AIC, BIC or EBIC
Refit this model without LASSO in which absolute parameters smaller than € are fixed to zero

The 1vnet function allows for LASSO regularization for a given model matrix (g, Qu,
®, ¥, A or B) and a given value for the tuning parameter v. The optimizer used in 1vnet does
not return exact zeroes. To circumvent this issue, any absolute parameter below some small value
€ (by default e = 0.0001) is treated as zero in counting the number of parameters and degrees of
freedom (Zou, Hastie, Tibshirani, et al., 2007). The 1vnetLasso function implements the search
algorithm described in Algorithm 3 to automatically choose an appropriate tuning parameter,
use that for model selection, and rerun the model to obtain a comparable fit to non-regularized
models. In this algorithm, a sequence of tuning parameters is tested, which is set by default to a
logarithmically spaced sequence of 20 values between 0.01 and 1.

4.3.1. Simulation Study 3: Latent Network Modeling ~ We studied the performance of LASSO
penalization in estimating the latent network structure in a similar simulation study to the study
of the stepwise procedure described above. Data were simulated under a similar model to the one
shown in Fig. 4, except that now 8 latent variables were used leading to a total of 24 observed
variables. All parameter values were the same as in simulation study 1. The simulation followed
a 5 x 3 design. Sample size was varied between 100, 250, 500, 1000, and 2500, and for each
sample size 1000 datasets were simulated leading to a total of 5000 generated datasets. On these
datasets, the best model was selected using either AIC, BIC, or EBIC, leading to 15,000 total
replications. In each replication, sensitivity and specificity were computed. Figure 8 shows that
AIC had a relatively poor specificity all-around, but a high sensitivity. EBIC performed well with
sample sizes of 500 and higher.

4.3.2. Simulation Study 4: Residual Network Modeling ~ To assess the performance of LASSO
in estimating the residual network structure we simulated data as in Fig. 6, except that in this
case four latent variables were used, each with 5 indicators, the residuals of which were linked
via a chain graph. All parameter values were the same as in simulation study 2. The design was
the same as in simulation study 3, leading to 5000 generated datasets on which AIC, BIC, or
EBIC was used to select the best model. While Fig. 9 shows good performance of the LASSO in
retrieving the residual network structure and similar results as before: AIC performs the worst in
specificity and EBIC the best.
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FIGURE 8.

Simulation results of simulation study 3: model selection via penalized maximum likelihood estimation in latent network
modeling. The same model as in Fig. 4 was used except now with 4 latent variables leading to 24 observed variables. For
each sample size, 1000 datasets were generated, leading to 5000 total simulated datasets on which AIC, BIC, or EBIC
was used to select the best model. High sensitivity indicates that the method is able to detect edges in the true model, and
high specificity indicates that the method does not detect edges that are zero in the true model.

5. Empirical Example: Personality Inventory

In this section, we demonstrate LNM and RNM models by confirmatively testing a model
and exploratively searching a residual and a latent network structure. We use the 1vnet package,
which can be installed in R as follows:

> install.packages ("lvnet")
> library("lvnet")

To exemplify the method, we will use a dataset from the psych package (Revelle, 2010)

on the Big 5 personality traits (Benet-Martinez & John, 1998, Digman, 1989, Goldberg, 1990,
1993, McCrae & Costa, 1997). This dataset consists of 2800 observations of 25 items designed
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Simulation results of simulation study 4: model selection via penalized maximum likelihood estimation in residual network
modeling. The same model as in Fig. 6 was used except now with 4 latent variables leading to 20 observed variables. For
each sample size 1000 datasets were generated, leading to 5000 total simulated datasets on which AIC, BIC, or EBIC
was used to select the best model. High sensitivity indicates that the method is able to detect edges in the true model, and
high specificity indicates that the method does not detect edges that are zero in the true model.

to measure the 5 central personality traits with 5 items per trait. We estimated the CFA model
on the BFI dataset. Next, we used LASSO estimation to the RNM model using 100 different
tuning parameters and using EBIC as criterion to maximize specificity and search for a sparse
residual network. The fully correlated covariance matrix of latent variables is equivalent to a fully
connected latent network structure. Thus, after fitting a RNM model, we can again apply LASSO
to estimate a latent network in the resulting model, which we abbreviate here to an RNM+LNM
model. The R code used for this analysis can be found in supplementary materials. Analyses were
performed using version 0.3 of the 1vnet package.

Table 1 shows the fit of the three models. The CFA model fits poorly. The RNM model has
substantively improved fit and resulted in good fit indices overall. The estimated RNM+LNM
model had the best BIC and EBIC and showed that 5 edges could be removed from the latent
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TABLE 1.
Fit measures for three models estimated on the BFI dataset in the psych R package. CFA is the correlated five-factor
model.

df chisq AIC BIC EBIC RMSEA TLI CFI
CFA 265  4715.62  230,250.58  230,606.82  231,559.30 0.08 0.75 0.78
RNM 163 688.74 226,427.69  227,389.55  229,961.26 0.03 095 097

RNM+LNM 168  723.89 226,452.85  227,385.01  229,877.35 0.03 095 097

RNM is the same model as the CFA model with a residual network. RNM+LNM denotes the same model
as the RNM model in which edges of the latent network have been removed.

Factor structure & latent network Residual network
Agreeableness
® Al: Am indifferent to the feelings of others.
® A2: Inquire about others’ well-being.
©® A3: Know how to comfort others.
©® A4: Love children.
® AS: Make people feel at ease.

Conscientiousness
: my work.

in verything is perfect.

G3: Do things according to a plan.

C4: Do things in a half-way manner.

C5: Waste my time.

coooo0

Extraversion
© E1: Don'ttalk a lot.

© E2: Find it difficult to approach others.
o E3: Know how to captivate people.

o E4: Make friends easily.

© E5: Take charge.

Neuroticism
N1: Get angry easily.

N2: Get iritated easily.

N3: Have frequent mood swings.
© N4: Often feel blue.

© Ns: Panic easily.

Openness
O1: Am full of ideas.
d

© 02: Avoi erial
© 03: Carry the higher level
© 04: Spend tim g on things.

© O5: Will not probe deeply into a subject.

FIGURE 10.
Visualization of the factor structure and latent network (/eft) and the residual network (right) of the BFI personality dataset
from the psych package in R. LASSO estimation with 100 different tuning parameters in combination with EBIC model
selection was used to first estimate the residual network structure and following the latent network structure.

network after taking residual interactions into account. Figure 10 shows the factor structure and
residual network of the final RNM+LNM model. It can be seen that Agreeableness is now only
connected to extraversion: after taking into account someone’s level of extraversion agreeableness
is independent of the other three personality traits. Extraversion is the most central node in this
network and the only trait that is directly linked to all other traits. The residual network shows
many meaningful connections. While seemingly densely connected, this network only has 34%
of all possible edges in a network of that size, leading the model to have 168 degrees of freedom.
The corresponding residual covariance structure is fully populated with nonzero elements.

It should be noted that the procedures used in this example are highly explorative. While
Table 1 shows that the RNM fits better than the CFA model, the CFA model is solely based on
theory whereas the RNM model was found through high-dimensional model search. As a result,
to substantially interpret the structure found in Fig. 10 it should first be replicated in independent
samples.

6. Conclusion

In this paper, we introduced a formal psychometric model for network modeling of multivari-
ate normal data. We contrasted this model with latent variable models as commonly used in CFA
and SEM. Furthermore, using the CFA and SEM frameworks, we proposed two generalizations
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of the network model to encompass latent variable structures within the network paradigm. In the
first generalization, LNM, we construct a network among the latent variables, whereas in the sec-
ond generalization, RNM, a network is formed among residuals of indicators. Both frameworks
offer powerful benefits over both latent variable and network modeling. From the perspective of
latent variable modeling, the LNM framework allows one to exploratively search for conditional
independence relationships between latent variables without the need for prior theory, and the
RNM framework allows one to model latent common causes without assuming local indepen-
dence. From the perspective of network modeling, the LNM framework allows one to model
network structures while taking measurement error into account, and the RNM framework allows
one to estimate a network structure, even when all nodes are in part caused by unobserved or latent
variables. In addition, both frameworks allow for network models to be fitted and compared to
SEM models. The discussed methodology has been implemented in the freely available R package
lvnet.

Simulation studies showed that stepwise search and penalized maximum likelihood esti-
mation of the residual or latent network structures resulted in high specificity all around—the
methods did not result often in false positives—and rapidly increasing sensitivity as a function of
the sample size; the higher the sample size, the more true edges were detected in the algorithm.
These numbers are comparable to state-of-the-art network estimation techniques in sample and
model sizes that are plausible in psychological settings (van Borkulo et al., 2014). In all four
simulation studies, using AIC as the model selection criterion led to the best sensitivity and using
EBIC led to the best specificity. However, it is important to note that the choice of a particu-
lar information criterion cannot be argued by these numbers alone, and depends on the relative
importance one assigns to the side of discovery (optimizing sensitivity) or the side of caution
(optimizing specificity; Dziak, Coffman, Lanza, & Li, 2012). Furthermore, it should be noted that
these simulation results are specific for the particular model setup and sample sizes used; results
might be different for other kinds of models or sample size ranges.

In addition to the LNM and RNM frameworks, other combinations of CFA, SEM, and network
modeling are possible as well. For example, a framework can be constructed which contains both
alatent and a residual network (as shown in our empirical example), combining both the LNM and
RNM in the same model. Furthermore, directed regression paths as in the SEM model can be added
to the LNM model. While these models are all estimable in the 1vnet software, in the current
paper we chose to focus on the distinct benefits that modeling a residual or latent network presents.
In this paper, we only described the modeling of multivariate normal data. More advanced models
are possible, but not yet implemented in the 1vnet software. In the case of binary variables, the
appropriate model to use is the Ising model, which has been shown to be equivalent to multivariate
item response models (Epskamp et al., in press; Marsman, Maris, Bechger, & Glas, 2015). Future
research could aim at constructing Ising models among binary latent variables in latent class
analysis, or constructing residual networks in models with binary indicators. It should be noted
that the expressions optimized in Egs. (1) and (7) are based on summary statistics and therefore
only truly applicable to complete data. With incomplete data, the appropriate estimation method
is to use full-information maximum likelihood (FIML; Arbuckle, Marcoulides, & Schumacker,
1996); however, FIML has not yet been implemented in the 1vnet software. Finally, the presented
search algorithms tend to be slow and do not yet scale up well for high-dimensional datasets. Future
research should aim to optimize these search algorithms. Particularly promising is the work by
Pan, Ip, and Dube (in press), who present Bayesian estimation techniques of a similar modeling
framework as the RNM.

In our view, the presented modeling framework is a versatile and promising addition to
the spectrum of psychometric models. The GGM, which has a central place in this modeling
framework, acts as a natural interface between correlation and causality, and we think this rep-
resentation should receive more attention in psychometrics. From the point of view afforded by
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the current paper, the typical attempt to determine directed SEMs from correlation structures in
fact appears somewhat haphazard in psychology, a historical accident in a field that has been
prematurely directed to hypothesis testing at the expense of systematic exploration. Perhaps, psy-
chometrics as a field should consider taking a step back to focus on the consistent identification
of GGMs, instead of wanting to jump to the causal conclusion immediately. In this regard, the
fact that GGMs do not have equivalent models would appear to be a major benefit, as they allow
us to focus on charting connections between variables systematically, without being forced to
adhere to one particular causal interpretation or another. In addition, because the GGM does not
specify the nature or direction of interactions between variables, it appears a natural model for
research situations where no temporal information or experimental interventions are present, so
that associations may arise for a multitude of reasons: The GGM can be consistently interpreted
regardless of whether associations arise from direct causal relations, reciprocal causation, latent
common causes, semantic overlap between items, or homeostatic couplings of parameters. While
this can be seen as a downside of the GGM—the lack of directionality leads to fewer falsifiable
hypotheses—it can also be a major asset in a field like psychology, where strong causal theory is
sparse and the identification of DAGs often appears a bridge too far.
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