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PREFACE 

In hindsight, it is notoriously difficult to escape the impression that there have been 
certain turning points, or landmark events, in one's intellectual development. In 
my personal reconstruction of this process, two such events occurred when I was 
still a student, and both involved my later supervisors. 

The first took place when I had just enrolled as a student at the Psychological 
Methods department. Like all new students in methodology. I followed a course on 
formal models which was given by Don Mellenbergh. Don introduced the classical 
test theory model by stating that he was going to do something strange. He was 
going to brainwash people inbetween testing occasions. When he then took the 
expectation over such replications, and subsequently introduced a population sam-
pling scheme, he could drop the reference to the expectation of replications again, 
and all kinds of elegant expressions followed for important concepts like reliability. 
This seemed almost like a magic trick to me. It was the first time I started sus-
pecting that there was something strange with the formal models that we use in 
the analysis of psychological test scores, and that it had to do with the application 
of the expectation operator. 

The second event concerned a question posed by Jaap van Heerden at a technical 
colloqium about item bias. The speaker casually remarked that the latent variable 
could be considered the cause of its indicators. After the talk, Jaap looked over his 
glasses in a fashion that I later learned to be very characteristic of him, and said, 
uso, you would say that mentalistic concepts can play a causal role.. .". Then there 
was silence. When the speaker had regained his calm, he tried to defend his position 
by invoking the analogous thesis that mass was obviously the cause of readings on 
a balance scale. Jaap turned out to doubt this too. I remember thinking, "that 
man is crazy", but the question did not let go of me. I do not know whether Jaap's 
degree of inquisitiveness is to be considered pathological, but if it is. then I am 
afraid that I have developed a similar syndrom over time, so I hope not. 

The combination of these two fundamental problems - that is, the interpretation 
of probability in psychometrics, and the theoretical status of concepts like latent 
variables - are the basis of this book. For when I became a Ph D. student with 
Don and Jaap, it seemed like a good idea to devote some attention to these issues. 
However, in searching the literature, I failed to find a thorough analysis of these 
problems, although possible conceptualizations were sometimes alluded to - usu-
ally in footnotes, or in paragraphs that were accompanied by notes like "reading 
of this section can be omitted without loss of continuity". This surprised me. I 
did find a wealth of literature on related questions in the philosophy of science. 
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and I also found many psychological articles on the status of substantive traits, like 
general intelligence and the Big Five. None of these papers, however, was directly 
concerned with latent variable theory as it is used in psychometrics. Applying the 
frameworks of philosophy of science to the theoretical status of latent variables 
was, in my opinion, very clarifying, although the resulting paper (Chapter 3 in the 
present dissertation) can arguably be said to raise more problems that it solves. It 
turned out, however, that to apply philosophy of science to the question how tech-
nical concepts in psychometrics may relate to substantive concepts in psychology, 
was a very good way to elucidate the issues involved. This dissertation applies this 
line of thinking to different theories of psychological measurement. I have chosen 
to include the true score model, the latent variable model, and the representational 
measurement model in the analysis. The treatment must therefore be considered 
incomplete. Missing from the analysis are generalizability theory and multidimen-
sional scaling. Also missing are chapters about the theoretical status of observed 
scores, and about a mysterious species of entities known as 'constructs'. Like life 
itself, however, a Ph. D. studentship is short, and choices have to be made. 

Although the material included in this dissertation should be read as a book, the 
chapters are based on papers that have been published elsewhere or are currently 
submitted. Specifically, Chapter 2 is partly based on Borsboom & Mellenbergh 
(2002). Chapter 3 is a slightly adapted version of Borsboom, Mellenbergh. & Van 
Heerden (in press). Parts of Chapter 4 are based on Borsboom & Mellenbergh 
(submitted). The last part of Chapter 5 is based on Borsboom, Van Heerden, & 
Mellenbergh (in press); I must, however, say that I no longer subscribe to the 
conclusion of that paper, and my views on validity are now better represented in 
Chapter 6. which is based on Borsboom, Mellenbergh, & Van Heerden (submitted). 
An overview of and introduction to this material is given in the first chapter of 
the book. In addition. I have chosen to include two articles (Borsboom, Mellen-
bergh, & Van Heerden, 2002-a; Borsboom, Mellenbergh. & Van Heerden, 2002-b) 
as appendices. 
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1. INTRODUCTION 

The most ordinary things are to phi-
losophy a source of insoluble puz-
zles. With infinite ingenuity it con-
structs a concept of space or time 
and then finds it absolutely impossi-
ble that there be objects in this space 
or that processes occur during this 
time... 
- Ludwig Boltzmann, 1905 

1.1 Philosophy of science's insoluble puzzle 

Scientific theories say too little and they say too much. They say too little because 
they require abstraction: No theoretical explanation of a phenomenon includes 
the details necessary for a perfectly adequate account of empirical observations. 
Theories aspire to explain enough, rather than everything, and so effects of variables 
in which the researcher is not interested, or which he hypothesizes to be negligible, 
are usually left out of the theoretical model. For instance, a researcher who aims to 
explain how observed differences in scores on a test for spatial ability originate, may 
hypothesize that these are due to differences in general intelligence. Then he will set 
up a theoretical model to capture this relation, and in doing so he will exclude effects 
from other variables, insofar as he thinks this is justifiable. Thus, theoretical models 
are incomplete. Apart from leaving things out of the theory, however, the scientist 
also puts things into the theory. This is the process of idealization: In order to set 
up manageable models, the researcher will ascribe properties to theoretical entities 
that they could not really have. For instance, in testing his model, the researcher 
may assume that general intelligence is normally distributed on the continuum. 
This cannot actually be the case, because there are not enough people to realize 
such a distribution. However, the researcher may have a theoretical rationale that 
leads him to expect that the assumption will not be too far besides the truth. This 
process of idealization is the reason that theories say too much. 

For the philosophically inclined mind, this situation is bound to be a source 
of theoretical problems - or 'insoluble puzzles', as Boltzmann refers to them in 
the above citation. One of the recurrent discussions concerns the status of the 
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theoretical terms used. What do such terms mean? Do they aim to designate 
entities or structures that exist in reality? If this is the case, then we have a problem, 
because idealization ensures that theoretical terms will not exist in the way that 
the theory, interpreted literally, mentions them, and abstraction ensures that the 
theory will not be complete. This reasoning thus seems to lead to the conclusion 
that all theories are false by necessity, which is a problematic conclusion from both 
a scientific and a philosophical point of view. If one weights the objections to literal 
interpretations of theories heavily enough, however, one may draw this conclusion. 
Of course, this will require a substantial change of perspective on the meaning of 
theoretical terms. Theoretical terms must then be seen as instrumental concepts, 
which play a useful role in constructing economic ways of describing the empirical 
observations, but do nothing more. In such an interpretation, however, theories 
seem to lose the explanatory connotation that usually motivates their development 
in the first place. 

The balance on which the gains and losses of such positions are weighted is the 
subject of the philosophy of science. All influential positions taken in this area of 
philosophy result more or less directly from the problem of interpreting theoretical 
concepts; from logical positivism, which required that all meaningful terms must be 
reducible to observation statements, to Popperian realism, which held that theories 
are bold guesses about the world and therefore must be interpreted literally, to 
Kuhnian relativism, which said that theories themselves carve up the world in 
digestible pieces, so that scientific progress is impossible because successive theories 
do not describe the same reality. No satisfactory solution to the general problem 
has, in my opinion, been formulated; but the questions asked are legitimate, and the 
philosophy of science has done important work in formulating the possible positions 
that can be taken with respect to the issue. 

1.2 Theoretical terms in psychology 

Questions concerning the meaning of theoretical terms are relevant to every sci-
entific area, but in the case of psychology they seem especially pertinent, because 
psychology has not yet reached the point where these issues can be properly be left 
to philosophers. Scientific progress may be difficult to define, but it is certain that, 
if philosophy plays a substantial role in a field of inquiry, then research in that area 
has not progressed as far as it could have. Now, it is notoriously difficult to pin 
down the meaning of theoretical concepts in psychology - for instance, Neisser et 
al. (1996) mention a study in which a number of theorists were asked to define 
intelligence, and each of them gave a slightly different answer. Such a situation 
usually means that basic questions about the nature of theoretical concepts are the 
subject of discussion, and this, in turn, implies that philosophical considerations 
are still bound to be important, if not central. Thus, the proper conceptualization 
of the meaning of theoretical concepts in psychology has not yet become a purely 
philosophical problem; it is an issue that is relevant for theoretical psychology it-
self. Interestingly, however, the answers to the question, how theoretical terms like 
•intelligence' should be interpreted, often exemplify positions taken in the philos-
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ophy of science. In psychology, the most important divide runs between realist, 
operationalist, and empiricist interpretations of these terms. 

Realism gives the simplest interpretation of scientific theories, and it has been 
described as science's philosophy of science (Devitt, 1991). For the realist, theo-
retical concepts refer directly to reality, so that intelligence and extraversion are 
conceptualized as having an existential status quite independent of the observa-
tions. The meaning of theoretical concepts derives largely from this reference to 
reality; intelligence, for example, is conceptualized as an unobservable, but causally 
relevant concept. We learn about intelligence through its causal impact on our 
observations, and when we use the term 'intelligence', it is this causally efficient 
entity we indicate. Such views are embodied in the writings of many theorists in 
psychology (i.e., Jensen, 1999; Loevinger, 1957; McCrae & John, 1992; McCrae & 
Costa, 1997). 

The empiricist denies the referential connection of theoretical terms to reality, 
and instead claims that theoretical concepts are functions of the observations. In 
this view, theoretical concepts are fictions, although they may be very useful ones. 
Once the referential connection to reality has been denied, however, the question 
becomes what determines the meaning of theoretical concepts. Multiple lines of 
reasoning may be followed in this respect, but two of them yield positions that have 
been important in the history of psychology. 

The first is to identify the meaning of theoretical concepts with the way they 
are constructed, reflecting the positivist credo that the meaning of a proposition is 
its method of verification (Wittgenstein, 1922). In the philosophy of measurement, 
this position was translated into operationalism, a theory that states that theoreti-
cal concepts are synonymous with the set of operations by which they are measured 
(Bridgman, 1927). In this view, the meaning of the term -intelligence' is synony-
mous with the set of operations leading to the score on. say, the Stanford-Binet. 
Operationalism has been of crucial importance to the development of psychology, 
because it formed the philosophical basis for behaviorism (Watson, 1913; Skinner, 
1938). The crux of operationalism is that it denies that theoretical concepts have 
any surplus meaning over and above the observations. 

A second option that may be taken is to locate the meaning of theoretical 
concepts in their connections to other concepts figuring in a theory. Since, in 
the positivist view, a theory is a set of propositions connected by covering laws 
(Hempel, 1965), this network of connections has become known as the nomological 
network ('nomos' is Greek for 'law'). In this view, intelligence has surplus meaning 
over and above the observations, but it derives this meaning from the nomological 
network in which it figures and not necessarily from a reference to reality. This 
viewpoint exerted its influence on psychology mainly through Cronbach & Meehl's 
(1955) formulation of construct validity, which draws heavily upon the notion of a 
nomological network. 

Discussions on the interpretation of theoretical concepts continue to play an 
important role in many areas; they are the subject of enduring debates in fields like 
intelligence research (Neisser et al., 1996) and personality theory (Pervin. 1994). In 
my opinion, however, the generality of these discussions creates a serious problem. 
The problem is that it is not clear what the subject of the discussion is. 
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For what do we talk about when we discuss a theoretical concept such as general 
intelligence? Is it the vague notion researchers have prior to the formulation of a 
formal model? Possibly, but if this is the subject of our inquiry, we are not likely to 
come up with a consistent analysis: Researchers A and B may have a very different 
concept in mind, so that we would have to discuss the status of general intelligence 
for each researcher anew. Alternatively, we could take the topic of our inquiry to be 
the slightly less vague notion that figures in 'the' theory of general intelligence. This 
could be a fruitful approach (it is the one taken in the philosophy of science), apart 
from the slight problem that 'the' theory of general intelligence does not exist. We 
do have a largely unspecified system of relatively vague interconnections between 
rather loosely defined notions, but it does not resemble the well specified, coherent 
networks we encounter in physics, for example. In psychology, what is usually 
addressed as a nomological network is more accurately described as nomological 
sketchwork. The theoretical system is not precise enough to yield a fruitful analysis 
because, being vague, it is consistent with too many interpretations. 

A final possibility is to analyze theoretical concepts as they figure in the theoret-
ical system that meets the data in actual research. This does allow for a consistent 
analysis, because the 'gaps' in the theory need to be filled in and specified to gen-
erate hypotheses that allow for empirical tests, thus yielding a sufficiently precise 
theoretical framework. However, the fact that unspecified relations in psychological 
theories are 'filled in' through the application of a model suggests that the meaning 
of concepts may not be independent of that model. Viewing the issue in this way, 
therefore, requires an examination of the way theory and model interact in research. 

1.3 The function of models in psychology 

At first sight, the enterprise called science seems to display a considerable amount 
of homogeneity. A theory is formulated, hypotheses are derived, data are gathered, 
results interpreted, and implications for the theory are considered. The generality of 
this scheme of inquiry has been stressed in various philosophical treatises (De Groot, 
1961; Popper, 1959, 1963; Hempel, 1965; Nagel, 1961), and this has prompted 
philosophers of science to consider the status of theoretical concepts in a similarly 
general scheme. Upon closer examination, however, there are significant differences 
between theoretical concepts in the various sciences; and, in psychology, there is a 
step in the research process that, in my opinion, has received too little attention. 
This is the step from substantive theory to formal model. 

In the natural sciences, and especially in physics, this is such a small step that 
it hardly needs mentioning. To illustrate this, one need only consider the use of 
the term 'model'; the meaning of this term is virtually identical to the meaning it 
has in semantic logic. A theory is, in this view, an already formalized system that 
specifies a class of models. One may think of this in terms of a linear regression. 
The regression specifies a relation of the form Y = a + bX. In the semantic logic 
approach, this equation is not a model but a theory, and all realizations of the 
equation that are consistent with it (say. Y = 2 + 3A) are the models of the 
theory. In this line of thinking, therefore, the 'world' may be considered a particular 
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realization of the equation and therefore as a model of the theory. Such approaches 
to the relation between theories and the world are not uncommon in the philosophy 
of science - for instance, Van Fraassen's (1980) constructive empiricism is built 
on this line of reasoning. However, the terminology will strike the psychologist as 
foreign. 

In psychology, a theory is generally not a formalized system, but a system with a 
highly verbal, almost narrative, character. But because psychologists nevertheless 
have a preference for experimental research, rather than for interpretative tradi-
tions as common in the sociological and historical sciences, they tend to follow an 
approach to research tha t requires testing theories against experimental or quasi-
experimental da ta . One pervasive characteristic of da ta is t ha t there is, even in the 
simplest instances of research, too much of it too be processed by the human brain. 
This has nothing to do with whether or not the da ta are quanti tat ive in nature; 
in qualitative research, one also tends to end up with substantive amounts of data, 
although these usually take the form of transcripts of interviews. In order to make 
sense of the data , one may sometimes need to s tar t categorizing and counting even 
in qualitative research. So, most researchers end up with tables of counts of one 
type of another. Now how does one test a theory against tables of counts? This 
will almost invariably require setting up hypotheses tha t yield predictions about 
the structure of these tables. And this will in turn require the theory to be cast 
in some kind of formalized form. Usually, but not necessarily, this form will be 
inspired by statistics; however, note again tha t this has very little to do with the 
kind of research procedure tha t one follows when gathering the da t a (i.e., using 
psychological tests, questionnaires, observation techniques, or interviews). It is a 
problem tha t one always faces in psychological research. 

Thus, testing a theory requires ' translating' the theory into a formal language. 
This translation is then called a model, and one examines whether the theory is con-
sistent with empirical da ta indirectly, i.e., through an evaluation of the consistency 
between the model and the data . This is not to say tha t the procedure is incon-
sistent with semantic logic, of course, but to indicate a complication in research 
tha t philosophers of science easily overlook. In physics, what one calls a theory 
is nearly identical with a system of equations. It would be odd to ask whether 
Newton's ƒ = ma is an adequate translation of his theory concerning the relation 
between force, mass, and acceleration, because in an important sense this equation 
is Newton's theory. One may, of course, counter tha t this is a difference of degree, 
and insist tha t the concept of mass is just as well represented by the symbol m as 
intelligence is represented by the latent variable g in a s tructural equation model. 
This is probably true, but , to paraphrase Wilkes (1988), it is also t rue tha t there is 
a difference in degree between the moleheaps in my backyard and the himalayas; for 
the evaluation of theory and research in psychology, the fact tha t theories are not 
formalized systems, but relatively vague interconnections between loosely defined 
notions, does make a difference. 

The reason for this is the following. Although the terminology of "translating' 
a theory into a model is often used, it is an inadequate description of what really 
happens. It suggests, for example, tha t the model is constructed on the basis of the 
theory, so tha t the theory dictates the model: If this were the case, models would be 
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tailored on individual theories. With the exception of a handful of research areas in 
mathematical psychology, psychophysics, and perception research, this is not what 
happens in psychology. The structure of psychology is such that there are a few 
widely used formalized systems, such as the generalized linear model (McCullagh & 
Nelder, 1989), the structural equation model (Jöreskog & Sörbom, 1993), and the 
generalized linear item response model (Mellenbergh, 1994), and when substantive 
theories meet the data, they are represented by a variant of one of these general 
models (no extensive modeling endeavors - e.g., those using path analysis - have 
to be imagined here; the analysis of variance model is also a model). Theories are, 
so to speak, forced into a prefab mold. 

A direct consequence of this way of working is that it is not only the model 
that inherits its structure and specification from the theory; the theory inherits 
characteristics of the model just as well. To give an example, a theory may suggest 
a causal link between the level of extraversion and attractiveness, so that more ex-
traverted people are considered more attractive. This theory could be tested using a 
structural equation model. In this case, the theory would inherit certain structures 
from the model that were not part of its initial specification. For example, if ex-
traversion and attractiveness were conceptualized as latent variables, the researcher 
would have to assume that these characteristics are normally distributed, that they 
are linearly related to their indicators and to each other, that the observed variables 
follow a multivariate normal distribution, that errors are homoscedastic, and that 
the number of factor loadings equal to zero is large enough to identify the model. 
While some of the assumptions introduced by the model may be characterized as 
auxiliary, many cannot be dismissed as such. For example, the assumption of lin-
earity concerns the very form of the relation between the variables in question. It 
requires, for instance, that the variables entering into such a relation have some kind 
of quantitative structure. Surely, this is not an auxiliary assumption, but a sub-
stantive theoretical one, even though it is brought in from the modeling perspective 
rather than dictated by the theory. Thus, what is usually called a translation of a 
theory into a model is more accurately described as an exchange process; the trans-
ference of structure works both ways and affects both the model and the theory. 
The structure that, in the end, meets the data is a merger of theory and model. 

The situation as sketched above poses a problem for the analysis of theoretical 
concepts in psychology, as well as for the philosophy of science. Theorists who 
discuss the status of, say, general intelligence, have a tendency to neglect the way 
intelligence is conceptualized in formal systems. However, testing theories of intel-
ligence against data requires important choices to be made, and it may well be that 
it is in these choices that the theoretical status researchers ascribe to intelligence 
becomes most salient. Likewise, philosophers of science like to see a kind of uni-
formity across different scientific research areas, because analyses of 'the' structure 
of science require a significant degree of abstraction from substantive theory. So, 
either science as a whole is to be conceived of in an empiricist fashion, or science as a 
whole is a realist enterprise. But it may be that some parts of scientific research are 
aptly described as realist, while other parts are more aptly described as empiricist. 
It may even be the case that, within a single discipline, some research strategies 
require realism about theoretical terms, while others resist such an interpretation. 
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Thus, philosophy of science, formal modeling approaches, and discussions on the 
theoretical status of psychological concepts, are highly relevant to each other; and 
one can doubt whether they can be studied in isolation. 

1.4 Measurement models 

An analysis of theoretical concepts as they meet the data in research requires that 
we analyze the mergers that result from the exchange of structure between theory 
and model. This, in turn, means we have to consider the viewpoint that is brought 
in from the modeling side, as well as the theory itself. And precisely because 
theoretical concepts are not uniquely tied to particular formalized concepts, we can 
expect that differences in formal models, and especially in the theoretical concepts 
they entertain, lead to differences in the status of the theoretical concepts that 
meet the data. In other words, intelligence-as-a-true-score may have a different 
meaning, and postulate a different ontology, than intelligence-as-a-latent-variable. 
The upshot of this line of thinking, of course, is that there is no such thing as 'the' 
meaning of intelligence - at least, not before the researcher has made a choice of 
model. For a substantial part of this meaning of theoretical terms is introduced by 
the chosen model and not by the theory. 

How does a theoretical concept connect to the world? It is a dogma of empirical 
science that, at some point or another, a theoretical term must have something 
to do with observations. This is a risky formulation from a philosophical point 
of view, so I would like to neutralize possible philosophical quarrels about it right 
away. That theoretical terms be connected to observations does not imply that they 
must be defined in terms of observations, as the logical positivists demanded, and 
neither that observations must have immediate falsifying relevance for theoretical 
statements, as the falsificationists argued. It does not mean that observations are 
free of theory-ladenness, nor that we have the kind of incorrigible knowledge about 
sensory experiences that once went by the name of sense-data. Neither does it 
mean that there exists such a thing as objective knowledge about the world, or 
even that there is a final truth. It merely means that scientific tradition is such 
that a theorist, who invokes a theoretical concept, is expected to discuss possible 
observational implications of his theoretical concepts and the relations between 
them. He is not expected to come up with a ready-made set of hypotheses or an 
experimental setup that may falsify her theory. It is merely considered suspect 
to posit theoretical concepts with the accompanying note that no possible set of 
observations could ever be relevant to them. The scientific researcher is more or 
less obliged to think of ways to connect theories to data. It is in this sense that 
empirical science is empirical, and it is in this sense that theoretical terms are to 
be connected to data. 

In psychology, models that take care of this connection are generally called 'mea-
surement models'. Now I need to neutralize the strong connotations of the word 
'measurement', for it has a tendency to get people up in arms (e.g., Michell, 1999). 
In psychology, the term 'measurement model' must not be interpreted as imply-
ing quantification. Measurement models may relate nominal observed variables to 
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nominal latent variables, as is done, for instance, in latent class models, in which 
case quantification is achieved nor aspired. In psychology, the term 'measurement' 
is rather to be interpreted as an extended form of observation. Although mea-
surement models are universally formal in character, they may be fully qualitative. 
Also, measurement models do not aspire to say everything there is to be said about 
people, so they do not try to 'catch people in numbers', as is sometimes thought. 
They do tend to abstract away from many features of human beings, and I suppose 
this is the reason that the above mistake is often made; however, the statement 
'John is aggressive' just as well abstracts away from such features as the statement 
'subject i is a member of latent class ƒ does. The purpose of measurement models 
in psychology is not necessarily to quantify, nor to yield a description of people that 
is in any way 'complete'. The purpose of measurement models is to connect theo-
retical concepts to observations, and it is for this reason that they are indispensable 
in psychology. 

Because theoretical concepts are connected to observations through measure-
ment models, these models should be the main focus of the analysis. Now, it may 
seem to the student of psychology (or even to the working researcher) that there 
is a considerable consensus on how psychological measurement should be conceptu-
alized - or even that there is only one theory of psychological measurement. The 
main reason for this is that, just as textbooks on statistics tend to propagate a 
particular view of statistics as 'the' theory of statistics, thereby creating the false 
impression that statistics-is-statistics-is-statistics (Gigerenzer, 1993), textbooks on 
psychological measurement similarly display a psychometrics-is-psychometrics-is-
psychometrics approach. For example, many psychologists are taught that reliabil-
ity is an important feature of psychological tests, learn to equate the concept with 
the value of Cronbach's a, and adopt an attitude that can be described as 'the 
higher the better'; they are not informed of the highly distinct ways to conceptu-
alize reliability (Lord & Novick, 1968; Mellenbergh, 1996; Brennan. 2002), of the 
existence of measurement models that may imply low internal consistency (Bollen 
& Lennox, 1989), or of the fact that there are arguments for abolishing the concept 
of classical reliability altogether (Lumsden, 1976). The case of reliability is not an 
exception. In fact, the very concept of psychological measurement, as well as the 
possible ways to address it, are the subject of enduring discussions among method-
ologists, mathematical psychologists, statisticians, and philosophers. Interestingly, 
these debates circle around the same themes as the ones we find in discussions 
between realists and empiricists in the philosophy of science. 

For example, psychological measurement systems are often presented as methods 
for "measuring the degree of ability of the person" (Rasch. 1960. p.16). A whole 
research paradigm is based on this line of thinking, but for one of the most influential 
psychologists of the previous century, B.F. Skinner, this is a backward strategy. For 
Skinner, abilities and traits are not only fictions, they are useless fictions, impeding 
the progress of science: "Aqua regia has the ability to dissolve gold; but chemists will 
not look for an ability, they will look for atomic and molecular processes" (Skinner. 
1987, p. 785). Jane Loevinger defends a diametrically opposed position, stating 
that what is at issue in psychological measurement is ".. . the validity of the test 
as a measure of traits which exist prior to and independently of the psychologist's 
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act of measuring" (Loevinger, 1957. p. 042), where the term 'trait' is intended to 
designate exactly the kind of ability concept that Skinner finds ludicrous. Ebel 
(1956, p. 642-643) quotes1 Kaiser (1960, p. 412), who is said to deplore this kind of 
"philosophically naive faith" which "went out of style in the nineteenth century", to 
underscore his own conviction that "those who think of a real trait which 'underlies' 
a test score" are philosophically immature, because they ".. . have not yet learned 
that realistic philosophy is productive mainly of verbal discourse, and that it must 
be shunned if mental measurement is to advance". Forty years after the major 
battles surrounding the cognitive revolution and the abandonment of behaviorism, 
the issue is still with us. Edwards & Bagozzi (2000, p.157) state that "we intend that 
constructs refer to phenomena that are real and exist apart from the awareness and 
interpretation of the researcher and the persons under study", but Michell (2000. 
p. 639) boldly qualifies a whole psychometric paradigm that is based on this line 
of thinking as resulting from a "methodological thought disorder". 

Like the approaches in philosophy of science, the papers from which these quotes 
were taken are of a very general nature. There are treatises providing systematic 
overviews of realist, positivist, or empiricist stances toward psychological measure-
ment (most notably Messick, 1981; 1989), but these tend to abstract away from 
the relation these viewpoints may have to the different models that can be used. 
Although now and then a reference to a specific type of model is made - for exam-
ple, Michell (1999; 2000) makes a case for the additive conjoint model on the basis 
of philosophical considerations - there has, to my knowledge, been no systematic 
treatment of the way different measurement models relate to empiricist, realist, op-
erationalist, or other philosophical viewpoints. The purpose of the present book is 
to study these connections. It will become apparent that statistical models are not 
philosophically neutral, as is sometimes thought; on the contrary, there turn out to 
be clear connections between measurement models and philosophical views. This 
implies that a researcher, who chooses a particular model to connect his theoretical 
terms to the observations, is taking a philosophical stance with respect to the status 
of the theoretical terms he uses. In fact, he not only chooses a model; he chooses a 
philosophy of science. 

1.5 Outline of this book 

The aim of this book is to evaluate different measurement models in terms of their 
connections to philosophical views, and to discuss the relevance of these views to 
psychology. I will focus on three measurement models that have been highly in-
fluential in the history of psychological measurement: classical test theory, latent 
variable theory, and representational measurement theory. 

Chapter 2 covers the classical test model (Lord & Novick, 1968). Classical test 
theory is the most widely used model in psychology; it is the theory that provides 
well-known concepts like true scores and reliability. However, classical test theory 

1 In my opinion, this quote is out of context, for the sentence cited does not apply to realism 
about attributes, but to the conviction that attributes have an inherent scale of measurement, 
which is a completely different topic. 
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is an almost perfect instantiation of operationalism. The fact that operationalism 
is almost universally rejected by psychologists is, of course, inconsistent with the 
popularity of classical test theory, and it is argued that the conceptual framework 
of classical test theory is grossly misinterpreted in psychological research. 

Chapter 3 examines the latent variable model, more specifically the generalized 
item response theory (GLIRT) model (Mellenbergh, 1994). This is actually a class 
of models which comprises, among others, the common factor model, the Rasch 
model, and the latent class model. It will be shown that these models require 
a realist interpretation of the latent structures they posit. Thus, a theorist who 
identifies a psychological concept with a latent variable buys into realism about 
theoretical terms. Special attention will be given to causal interpretations of latent 
structures, which prove to raise some interesting philosophical problems as well as 
psychological research questions. 

Chapter 4 considers the representational measurement theory model as devel-
oped by Krantz, Luce, Suppes, & Tversky (1971). This model is, strictly speaking, 
more aptly characterized as an approach to measurement than as a model, and 
it is as philosophically explicit as it is mathematically rigorous. The central con-
cept in representational theory is the measurement scale, which is widely known 
because of Stevens' (1946) typology of nominal, ordinal, interval, and ratio scales. 
It is argued that representational measurement theory implements an empiricist 
conception of measurement, and that measurement scales must be viewed as con-
structions. Therefore, a psychologist, who identifies a theoretical term with a scale, 
can no longer adhere to realism. 

In Chapter 5, I will examine the relations between the different models. At a 
formal level, many such connections are known to exist from the psychometric lit-
erature. However, in terms of semantics, model interpretation, as well as ontology, 
these connections are not straightforward. In fact, I will show that whether any 
such relations can be taken to hold depends crucially upon the possibility to use 
what is known as a propensity interpretation of the probabilities figuring in the 
latent variable and true score models. If this interpretation is denied, the models 
must be viewed as strongly distinct. However, even though the models are closely 
connected to each other under a suitable choice of model interpretation, the fo-
cus of each model remains different. In particular, true score theory deals with 
error structures, fundamental measurement concentrates on the representation of 
observed relations, and latent variable models address the sources of variation in the 
test scores. The difference in theoretical status between true scores, latent variables, 
and measurement scales, remains regardless of the chosen probability semantics. 

From Chapter 5, it will become evident that latent variable theory is the only 
model that explicitly addresses the question where variation in scores comes from. 
Second, it is the only model that explicitly incorporates the attribute to be measured 
in the formal structure of the model. And third, the relation between the attribute 
and the observations may be framed in terms of causality. These three ingredients 
are coupled in Chapter 6 to present an account of validity that is loosely inspired 
on the latent variable model, but can also be applied to other models. Validity is 
conceptualized in terms of a causal relation between the attribute to be measured 
and the observations. It will be argued that the primary source of the validity 
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problem in psychological measurement is not that it is difficult to find out what is 
measured, but that it is difficult to find out what we intend to measure. 





2. TRUE SCORES 

Nothing, not even real data, can con-
tradict classical test theory. .. 
- Philip Levy, 1969 

2.1 Introduction 

In September 1888. Francis Ysidro Edgeworth read a paper before Section F of the 
British Association at Bath, in which he unfolded some ideas that would profoundly 
influence psychology. In this paper, he suggested that the theory of errors, at that 
point mainly used in physics and astronomy, could also be applied to mental test 
scores. The paper's primary example concerned the evaluation of student essays. 
Specifically, Edgeworth (1888, p. 602) argued that ". . . i t is intelligible to speak 
of the mean judgement of competent critics as the true judgment; and deviations 
from that mean as errors". Edgeworth's suggestion, to decompose observed test 
scores into a "true score' and an 'error' component, was destined to become the 
most famous equation in psychological measurement: Observed = True + ErroT. 

In the years that followed, the theory was refined, axiomatized, and extended in 
various ways, but the axiomatic system that is now generally presented as classical 
test theory was introduced by Novick (1966). and formed the basis of the most 
articulate exposition of the theory to date: The seminal work by Lord & Novick 
(1968). Their treatment of the classical test model, unrivalled in clarity, precision, 
and scope, is arguably the most influential treatise on psychological measurement 
in the history of psychology. To illustrate, few psychologists know about the other 
approaches to measurement that are discussed here: You may be able to find a 
handful of psychologists who know of latent variables analysis, and one or two who 
have heard about fundamental measurement theory, but every psychologist knows 
about true scores, random error, and reliability - the core concepts of classical test 
theory. 

The main idea in classical test theory, that observed scores can be decomposed 
into a true score and an error component, has thus proved a very attractive one. 
Actually, what was once an idea seems to have been transformed into a fact: There 
is no psychological measurement without error. This seems to be a safe position to 
take when applying psychological tests - after all, who would be so overconfident 
to claim that he could measure perfectly - but it is also counterintuitive. That 
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is. if I endorse the item 'I like to go to parties', why would there necessarily be 
measurement error involved? Could it not be that I truly like to go to parties? 
What, then, is measurement error? Now, this question is not as easily resolved 
as it may seem to be. It is seductive to conclude that random error, for example, 
represents the impact of unsystematic, transient, factors on the observations (e.g., 
the subject had a headache at the testing occasion, or she was distracted by noise, 
etc.). However, we will see that this interpretation is not without problems in 
the classical test theory framework. More generally, it is exceedingly difficult to 
reconcile the formal content of classical test theory with common interpretations 
of terms such as 'random error'. The friction between intuitive interpretations of 
terms, and the way they are formally conceptualized, is particularly salient in the 
interpretation of classical test theory's central concept, the true score. 

The true score is commonly introduced by using phrases such as "the true score 
is the construct we are attempting to measure" (Judd, Smith, & Kidder, 1991, 
p.49), or by stressing the distinction "between observed scores and construct scores 
(true scores)" (Schmidt & Hunter, 1999, p.189). This interpretation of true scores, 
as 'valid' or 'construct' scores, has been called the platonic true score interpretation 
(Lord & Novick, 1968, p. 39 ff.). Of course, the use of the adjective 'true' strongly 
invites such an interpretation, and as a consequence it is endorsed by many re-
searchers and students. However, problems with the platonic interpretation of true 
scores have been exposed by several authors (Klein & Cleary, 1967; Lord k Novick, 
1968; Lumsden, 1976). In particular, cases can be constructed where equating the 
true score with the construct score leads to violations of basic theorems in classical 
test theory. In these cases, the identification of true and construct scores will, for 
example, lead to correlations between true and error scores (Lord & Novick, 1968; 
Lumsden, 1976), while in the classical test theory model, these correlations are zero 
by construction. 

These observations point to the conclusion that the conjunction of the platonic 
true score interpretation with the axiomatic system of classical test theory is, at 
least for some cases, untenable. The implication of such a conclusion would be that, 
in general, the true score does not admit a realist interpretation. It is argued here 
that this is indeed the case. Further, the factors that preclude such an interpre-
tation are elucidated. It is argued that the problems can be traced back to the 
fact that the true score is syntactically defined in terms of a series of observations. 
This severely restricts the interpretation of the concept; for instance, the true score 
does not lend itself to an identification with Loevinger's (1957) traits, which are 
presumed to exist independently of the test scores. The reason for this is that true 
scores are conceptualized in terms of observed scores, and, as a result of the way 
classical test theory is constructed, have a highly restricted domain of generalization 
- namely, the domain of parallel tests. It is, however, also argued in this chapter 
that the entire idea, that two distinct tests could be parallel, is inconsistent. This 
essentially forces the conclusion that the true score can only apply to the test in 
terms of which it is defined. This, in turn, implies that a conceptualization of psy-
chological constructs as true scores requires an operationalist position with regard 
to such constructs. 
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2.2 Three perspectives on the true score 

The psychometric models discussed in this book are viewed from three perspectives: 
Formal, empirical, and ontological. The formal perspective consists of two parts. 
First, the model formulation, or syntax, is discussed. Second, the interpretation 
of the formal terms in the model, i.e., the model semantics, is evaluated. After 
clarifying the syntax and semantics of the model, I discuss it from an empirical per-
spective, by examining the way the model handles data in actual research. Finally, 
the ontological stance evaluates whether psychometric concepts such as the true 
score can be taken to refer to an external, objective reality, or must be considered 
to be products of the imagination of the researcher. 

In the context of classical test theory, the formal stance will focus mainly on 
the syntactical definitions of true and error scores, which form the basis of the the-
ory. The semantic interpretation of these concepts immediately takes us into philo-
sophical territory, because it must be framed in terms of counterfactual premises. 
Specifically, classical test theory must rely on a thought experiment to establish a 
version of probability theory that applies to the individual subject; this version of 
probability theory is needed for a consistent interpretation of the true score. From 
an empirical perspective, the thought experiment does heavy work in the interpre-
tation of concepts such as reliability. But from an ontological perspective, the fact 
that the true score is defined in purely syntactic terms, and moreover requires an 
interpretation in terms of counterfactuals, severely limits the interpretation of the 
concept. It is argued here that the true score is better conceptualized as an in-
strumental concept, that governs the interpretation of data analytic results in test 
analysis, than as an entity that exists independently of the researcher's imagination. 

2.2.1 The formal stance 

Syntax Classical test theory is syntactically the simplest theory discussed in this 
book. Virtually all theorems follow from just two definitions. First, classical test 
theory defines the true score of person i, ti, as the expectation of the observed score 
Xi over replications: 

ti = e(Xi). (2.i) 

Second, the error score Ei is defined as the difference between the observed score 
and the true score: 

Ei = Xi-ti. (2.2) 

The notation emphasizes that, while Xi and Et are considered random variables, 
the true score ti is by definition a constant. Note that the error scores have zero 
expectation by construction, since £ {Ei) =£{Xt — ti) = ti — U = 0. 

An extra source of randomness is introduced by sampling from a population of 
subjects. As a result, the true score also becomes a random variable and the theory 
generalizes to the familiar equation 

X =T + E. (2-3) 
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Lord & Novick (1968. p-34) note that no assumption concerning linearity needs to 
be made in order to derive Equation 2.3. The linear relation between true scores and 
observed scores follows directly from the definitions of true and error scores. Novick 
(1966) showed that all other required assumptions follow from the definitions of true 
and error scores for the individual, as given in Equations 2.1 and 2.2. For example. 
the above definitions ensure the independence of true and error scores, and imply 
that the error scores have zero expectation in the population (Mellenbergh, 1999). 

Semantics The true score is defined as the expected value of the observed scores. 
However, the interpretation of the expectation operator immediately yields a prob-
lem, because the expected value of the observed score is conceived of at the level of 
the individual. This conceptualization is borrowed from the theory of errors (Edge-
worth, 1888; see also Stigler, 1986, and Hacking, 1990), which has been fruitfully 
applied, for example, in astronomy. It is useful to briefly summarize this theory. 

The theory of errors works as follows. Suppose that one wants to determine 
the position of a planet, and that the planet is sufficiently distant for its position 
to be considered a constant. Suppose further that multiple measurements of its 
position are made. These measurements, if made with sufficient precision, will 
not yield identical values (for most readers, this will not come as a surprise, but 
it was originally considered to be a tremendously shocking discovery: see Stigler, 
1986). Now, the deviations from the true value may be interpreted as accidental 
disturbances, that is, as the aggregated effects of a large number of independent 
factors (e.g., weather conditions, unsystematic fluctuations in the measurement 
apparatus used, and the like). It is intuitively plausible that, if this is indeed the 
case, the observations will tend to produce a symmetrical, bell-shaped frequency 
distribution around the true value: Because they are accidental, deviations to either 
side of the true value are equally likely, and, further, larger deviations are less likely 
than smaller ones. A formal justification for this idea can be given on the basis of 
the central limit theorem, which states that the sum of independently distributed 
variables approaches the normal distribution as the number of variables of which 
it is composed gets larger. Indeed, in the context of astronomical observations, the 
repeated measurements were often observed to follow such a bell-shaped frequency 
distribution. The theory of errors combines these ideas: It conceptualizes accidental 
disturbances as realizations of a random error variable, which will produce a normal 
distribution of the observations around the true value. If this conceptualization is 
adequate, then it follows that random errors will tend to average out as the number 
of observations increases. Thus, in such a case it is reasonable to assume that the 
expectation of the errors of measurement equals zero. This, in turn, supports the 
use of the arithmetic mean over a series of measurements as an estimate of the 
true position, because the mean is defined as the point for which the sum of the 
deviations from that point equals zero. It takes but a small step to conceptualize 
the true position of the planet as the expected value of the measurements, for which 
the arithmetic mean is a maximum likelihood estimator. 

If classical test theory dealt with series of repeated measurements for which an 
analogous line of reasoning could be maintained, there would be few problems in the 
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interpretation of the theory. However, classical test theory does not deal with such 
series of measurements, but with measurements on a single occasion. Moreover, 
series of measurements for which the theory holds are not to be expected in psycho-
logical measurement. Such series must satisfy the axioms of classical test theory, 
which require that the replications are parallel. In a realistic interpretation, this 
would mean that replicated observations should be considered to originate from a 
stationary random process; Molenaar (personal communication) has observed that, 
in the terminology of time series analysis, one would refer to the observed score as 
a 'white noise' variable with nonzero expectation. A procedure that would approx-
imately satisfy the assumptions involved could, for example, consist in repeatedly 
throwing dice. That throwing dice would conform to the requirements of classical 
test theory is no coincidence, for what is in fact required is a procedure that al-
lows for the application of the probability calculus in a frequentist sense. In the 
context of psychological measurement, the stated assumptions are unrealistic, be-
cause human beings will remember their previous response, learn, get fatigued, and 
will change in many other ways during a series of repeated administrations of the 
same test. Thus, even if the observed scores could be appropriately characterized as 
originating from a random process (which could be doubted in itself), this random 
process would not be stationary, which implies that the repeated measurements 
would not be parallel. It is clear, therefore, that classical test theory a) is not 
concerned with series of measurements, and b) could not concern itself with such 
series in the first place, because actual repeated measurements cannot be expected 
to conform to the assumptions of the theory. Still, the syntactical formulation of 
the theory uses the expectation operator at an essential point in the development 
of the theory - namely in the definition of its central concept, the true score. What 
is to be done about this awkward situation? 

Introducing Mr. Brown It is useful to put oneself in Lord & Novick's shoes in 
order to appreciate the problems at hand1. First, Lord & Novick want to use 
a probability model based on Kolmogorov's (1933) axioms, but are unable to give 
this model a strong frequentist interpretation, which would make it comply with the 
dominant view of probability at the time (e.g., Neyman & Pearson 1967), because 
no actual series of repeated measurements will allow for such an interpretation. 
A subjectivist interpretation (De Finetti. 1974) is conceptually difficult: of course, 
the true score of subject i could be conceptualized as the expected value of the 
researcher's degree-of-belief distribution over the possible responses of subject i, 
but this view will not match the average researcher's idea of what constitutes a 
true value. For example, in psychological testing, the researcher will often not have 
any knowledge of subject i prior to test administration. In such cases, the Bayesian 
view would motivate the use of a noninformative prior distribution, which would 
moreover be the same across subjects. But this would imply that every subject has 
the same true score prior to testing. This is not unreasonable within the Bayesian 
paradigm, but it is squarely opposed to the way the average researcher thinks of 

1 The development commented on here can be found in Lord & Novick, 1968, Chapter 2. 
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measurement2 . As a consequence, the application of the probability calculus has to 
be justified in a different manner. 

Second. Lord & Novick want to reason along the lines of the theory of errors, 
but they cannot do this because the assumption t ha t errors will average out in an 
actual series of repeated observations, and tha t the arithmetic mean of tha t series 
will therefore be a reasonable estimate of the theoretical construct in question, is 
in flagrant contradiction with the basic fact t ha t human beings, unlike coins and 
dices, are capable of learning and inclined to do so. Moreover, Lord & Novick do not 
want to restrict the theory to continuous variables with normally distributed error 
scores, which, in the theory of errors, are critical for motivating the interpretat ion 
of the expected value as the t rue score. On the contrary, they want to generalize 
the theory to categorical observed variables, because, in psychological testing, these 
are far more common than continuous observed variables. For example, intelligence 
tests work with items tha t are scored dichotomously (as correct of incorrect), and 
Lord & Novick surely want their theory to cover such situations. 

Third, Lord & Novick need to do something with the individual, but this does 
not mean that they want to take such an undertaking serious. Classical test theory 
has no business with the peculiar idiosyncratic processes taking place at the level 
of the individual: The probability model is merely needed to allow for the formu-
lation of concepts such as reliability and validity, both of which are defined at the 
population level. A serious a t t empt at modeling individual subjects (e.g., through 
time series analysis) would, in all likelihood, not even yield results consistent with 
classical test theory. So, the subject must receive a probability distribution, but 
only in order t o make him disappear from the analysis as smoothly as possible. 

Lord & Novick's response to these problems may either be characterized as a 
brilliant solution, or as a deceptive evasion. In either case, their approach rigorously 
disposes of all problems in a single stroke: Lord k. Novick simply delete subjects ' 
memory by brainwashing them. Naturally, they have to rely on a thought experi-
ment to achieve this. This thought experiment is taken from Lazarsfeld (1959): 

•Suppose we ask an individual, Mr. Brown, repeatedly whether he is in favour of the 
United Nations; suppose further that after each question we 'wash his brains' and ask 
him the same question again. Because Mr. Brown is not certain as to how he feels about 
the United Nations, he will sometimes give a favorable and sometimes an unfavorable an-
swer. Having gone through this procedure many times, we then compute the proportion 
of times Mr. Brown was in favor of the United Nations.' (Lazarsfeld. 1959; quoted in Lord 
& Novick. 1968, pp. 29-30) 

Through the application of this thought experiment, the replications are ren-
dered independent as a result of the brainwashing procedure. The resulting hy-

2 Application of Bayes' theorem would also involve a term denoting the expected value of the 
observed score, conditional on the true score, and it is not unlikely that the interpretation of 
this term would still require a thought experiment similar to Lord & Novick's (1968, p.29), to be 
described hereafter. In this context, it is interesting that Novick, Jackson, & Thayer (1971) do 
not address this issue, while Novick & Jackson (1974) seem to retain this thought experiment in 
their Bayesian account of test theory 
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pothetical series of observations allows for the application of standard probability 
theory, a quasi-frequentistic conception of probability, and a syntactical definition 
of the true score which has at least a semantic interpretation: In the particular 
case of Mr. Brown, the true score equals the probability of him giving a favorable 
answer, which is estimated by the proportion of times he was in favor of the United 
Nations. 

Propensities? Interestingly, Lord & Novick call the probability distribution char-
acterizing this counterfactual series of replications a propensity distribution. This 
may be after Popper (1963), who proposed the propensity theory of probability 
as an objectivist alternative to Von Mises' conception of probability as relative fre-
quency (Van Lambalgen, 1990). The propensity view holds that probability is not a 
relative long run frequency, but a physical characteristic of an object like a coin, or, 
more accurately, of the object and the chance experimental setup (Hacking, 1965). 
Lord & Novick's reference to the propensity view is remarkable because, in the 
thought experiment, they seem to introduce a limiting frequency view of probabil-
ity. However, the limiting frequency and propensity interpretations of probability 
do not, in general, coincide. This is because propensities, by themselves, do not 
logically entail anything about relative frequencies. For example, a coin may have a 
propensity of .5 to fall heads; then it is possible, although perhaps unlikely, that it 
will forever fail to do so. In this case, the limiting relative frequency equals zero and 
thus deviates from the propensity. Because propensities are, in contrast to relative 
frequencies, logically disconnected from empirical observations, but are neverthe-
less supposed to conform to Kolmogorov's axioms, they have been said to operate 
under the 'conservation of mystery' (Kelly, 1996, p. 334). So, strictly speaking, 
the true score as a limiting frequency in the thought experiment is not logically 
connected to the true score as a propensity, because the propensity view and the 
relative frequency view are not logically connected. 

Thus. Lord & Novick's reference to the propensity interpretation of probability 
is intriguing, especially in view of the fact that they are going through so much 
trouble in order to generate a relative frequency interpretation for the observed 
score distribution. One reason for their referencing the propensity view may be 
that it is the only objectivist theory of probability that allows one to ascribe proba-
bilities to unique events. It is not improbable that Lord & Novick mention the term 
'propensity' because they are aware of the fact that they are actually doing just 
this, and therefore cannot use a relative frequency account. But why, then, intro-
duce the thought experiment in the first place? Why not settle for the propensity 
interpretation and let the relative frequencies be? 

My guess is that the reason for this move is twofold. First, propensities are 
logically disconnected from relative frequencies (i.e., they are not defined in terms 
of such frequencies), but they are not fully disconnected either. It is in fact obvious 
that the propensity of a coin to fall heads is related to its behavior in repeated 
coin tossing. One could say that propensities should be viewed as dispositions to 
behave in a certain way; a propensity of .5 to fall heads, as ascribed to a coin, could 
then be viewed as expressing the conditional 'if the coin were tossed a large number 
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of times, the relative frequency of heads would approximately be .5'. Because 
ascribing a disposition generally involves a prediction of this kind, Ryle (1949) has 
called dispositional properties 'inference tickets'. So, if Mr. Brown's true score is 
to be conceptualized in a similar way, the frequency behavior for which it would 
be an inference ticket must involve replicated measurements. Actual replicated 
measurements, however, are not generated by stationary random processes, and so 
it is likely that the propensities will not predict the actual relative frequencies at 
all. This would render Ryle's inference ticket useless. The inference ticket would, 
however, apply to the replicated measurements with intermediate brainwashing. 

Second, we must not forget that Lord & Novick are forging an account of psy-
chological measurement; and although they know that they cannot follow the line 
of reasoning that is the basis for the theory of errors, they do want to stay close 
to it. The theory of errors is clearly based on an observation concerning the be-
havior of scores in a long run of replicated measurements. Moreover, it is essential 
for these series themselves that they are unsystematic, i.e., that they are random. 
If they were not, there would be little reason to attribute the fact, that repeated 
measurements are not identical, to unsystematic fluctuations, and to view such 
disturbances as random error. Again, actual replications are unlikely to produce 
such series; these will neither be stationary, nor random. Hence, the need for Mr. 
Brown's being brainwashed inbetween the replications. 

The conclusion must be that Lord & Novick do not need the thought experiment 
for the application of the probability calculus itself; this could be done solely on 
the basis of the propensity view. Moreover, the propensity view seems more appro-
priate because classical test theory is largely concerned with probability statements 
concerning unique events. Lord & Novick need the thought experiment to main-
tain the connection between probability theory and the theory of errors, that is, to 
justify the definition of the true score as the expected value of the observed scores, 
and to defend the view that deviations from that value are to be interpreted as to 
random error. 

Thought experiments The brainwashing thought experiment could be cal-led suc-
cessful, for it is used in many psychometric models. Models that use it are said to 
follow a stochastic subject interpretation (Holland. 1990: Ellis & Van den Wollen-
berg. 1993). A stochastic subject interpretation of psychometric models must, in 
general, rely upon a thought experiment like the above. The thought experiments 
are needed to provide an interpretation that is in line with both the probability 
calculus and the typical idea of random error, and could be said to function as a 
"semantic bridge'. This property distinguishes them from other kinds of thought 
experiments, which are usually directed at a theory, rather than part of a theory 
(Brown, 1991; Sorensen, 1992). For this reason, it has been proposed to treat 
these thought experiments as a distinct class of "functional' thought experiments 
(Borsboom, Mellenbergh, & Van Heerden, 2002-a3). 

Classical test theory requires such a functional thought experiment, but this does 
not mean that it must take the particular form in which Lord & Novick present 

3 this paper is included in this dissertation as Appendix A 
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it. Any thought experiment that provides an interpretation consistent with the 
syntax of the theory could, in principle, do. Rozeboom (1966-a. p.387) considers, 
for example, that "we may fantasize an experiment in which each member i of 
P has been replicated p times and each replica (...) is tested (...), so that if p 
is large the frequency of a particular observed value X among among i's replicas 
approaches the probability of this observed score for i". This thought experiment 
thus considers a probability distribution over a very large number of replicas of Mr. 
Brown, every one of which is asked whether he is in favor of the United Nations. 
Still another form of the thought experiment is in terms of an infinite series of 
administrations of distinct parallel tests. In this case, we would not ask Mr. Brown 
the same question repeatedly, but we would present him with different questions 
that are parallel to the original question, that is, with a series of questions that all 
have the same expected value and error variance as the original question. Probably, 
many other forms of the thought experiment could be imagined. These thought 
experiments have in common that, as Rozeboom (1966-a, p. 385) puts it, they 
"try to convey some feeling for how sense can be made of the notion that a given 
testing procedure determines a probability distribution over potential test scores 
specific to each individual who might so be tested". It should be noted, however, 
that such thought experiments do little more than convey some feeling. Basically, 
the classical test theorist is trying to sell you shoes of which it is already obvious 
that they are three sizes too big. 

How definitions replaced assumptions Lord & Novick swiftly go over the con-
struction of true and error scores based on this thought experiment, and manage 
to dispose of the individual subject in exactly six pages (Lord & Novick, 1968, p. 
28-34). In the remainder of their treatment of classical test theory, the focus is 
on between-subjects results and techniques. At the basis of the theory, however, 
remains the true score, defined through this peculiar thought experiment. 

It is illustrative to recapitulate what has happened here. Lord & Novick have 
managed to put the theory of errors on its head. Recall that this theory is based 
on the idea that accidental errors will average out in the long run. The statistical 
translation of this notion is that accidental error scores can be viewed as realizations 
of a random variable with zero expectation. The zero expectation of measurement 
errors must therefore be viewed as an assumption (i.e., its truth is contingent upon 
the actual state of affairs in the world). On the basis of this assumption, the 
expectation of the measurements can be conceptualized as an estimate of the true 
score. Since Lord & Novick are not in a position to use anything resembling an 
actual series of replications, and therefore are not in possession of a suitable long 
run, they create one for themselves. However, because their long run is constructed 
on counterfactual premises, it must remain thought experimental. It is obvious 
that, upon this conceptualization, the zero expectation of error scores can no longer 
be taken serious as an assumption, because it applies to a counterfactual state of 
affairs. As a result, there is no empirical basis for taking the expected value of the 
measurements as an estimate of the true score. Now, Lord & Novick's response 
to this problem is remarkable. Instead of taking the zero expectation of errors as 
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an assumption on which one can base the hypothesis that the expectation of the 
observed scores is equal to the true score, they define the true score as the expected 
value of the observed scores and then derive the zero expectation of errors as a 
consequence. Where the theory of errors observes irregularities in measurement, 
and then proposes statistical machinery to deal with those, classical test theory 
proposes the statistical machinery, and then hypothesizes the irregularities that 
would conform to it. The identity of expected observed score and true score is 
thus transformed from a hypothesis into a definition; and the assumption that error 
scores have zero expectation becomes a necessary truth. Following these moves, one 
can see the circle close: The theory becomes a tautology. The price that is paid 
consists in the fully syntactical definition of the true score. 

2.2.2 The empirical stance 
If the applications of classical test theory were as esoteric as its theoretical formula-
tion, nothing could be done with it. However, classical test theory is without doubt 
the most extensively used model for test analysis. What, then, does it actually do 
in test analysis? How does it relate to empirical data? 

At this point, it is important to distinguish between how the classical model 
could be used in test analysis, and how the model is typically used. The basic 
axioms of classical test theory imply nothing about the data, and are therefore 
permanently immune to falsification: The adequacy of the posited decomposition 
of observed scores in true and error scores cannot, for any given item, be checked. 
Thus, this part of the model is untestable. This does not mean, however, that clas-
sical test theory could not be used to formulate testable hypotheses at all. How-
ever, to formulate such hypotheses requires extending the model with additional 
assumptions. These additional assumptions concern relations between true scores 
on different test forms, or items. Three such relations are commonly distinguished: 
parallelism, tau-equivalence, and essential tau-equivalence. Two tests x and x' are 
parallel in a population if they yield the same expected value and the same ob-
served score variance for every subpopulation (including subpopulations consisting 
of a single subject). If distinct tests are assumed to be parallel, they must have 
equal means and variances; in addition, all intercorrelations between tests must be 
the same. Two tests are tau-equivalent if they yield the same expected values, but 
different error variances; and they satisfy essential tau-equivalence if they neither 
yield identical expected values, nor identical observed score variances, but the ex-
pected values are linearly related through the equation £(X) = c+ £(X'), where c 
is constant over persons. For a given set of items, all three of these relations can 
readily be tested. For example, as Jöreskog (1971) has observed, when the classical 
model is extended with any one of the above relations, the model can be formulated 
as an identified factor model, and the implied covariance matrix can be fitted to the 
observed covariance matrix. Thus, commonly invoked assumptions about relations 
between true scores do have testable consequences. At least some parts of the so 
extended model could be tested. 

This is how the model could be applied. It is safe to say, however, that classical 
test theory is never applied in this way. The common applications of classical test 
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theory do not involve testing the model assumptions. The cause of this neglect 
is probably historical, but will not concern us here. Rather, we will be concerned 
with the function classical test theory fulfills in applications. The strategy that 
is followed is highly indirect, and works via the estimation of reliability. It is 
important to review this process extensively, for it contains the basis for many 
misinterpretations of what classical test theory is about. 

Reliability 

Reliability is a population dependent index of measurement precision (Mellenbergh, 
1996). It indicates the fraction of observed variance that is systematic, as opposed 
to random, in a given population. In classical test theory, reliability is the squared 
population correlation, p2

XT, between true and observed scores. This equals the 
ratio of true score variance to observed score variance: 

PXT = £ = -q^T- (2-4) 

This equation has intuitive appeal: In a given population, the value of the reliability 
coefficient will decrease as the error variance increases. If there is no error variance, 
reliability is perfect and equals unity. Note that this definition of reliability is 
population dependent (Mellenbergh, 1996). The reason for this is that reliability 
is defined in terms of the population model in Equation 2.3. This is reflected 
in the random variable notation for the true score in the definition of reliability, 
i.e., in Equation 2.4 the true score is denoted as T and not as t. A well-known 
implication of this definition is that reliability becomes smaller, if the true score 
variance in a population approaches zero while the error variance remains constant. 
As a consequence, for any individual subject i the reliability of a test equals zero, 
because by definition of. equals zero for all i. Because reliability is a population 
dependent concept, it can be meaningfully considered only when interpreted in 
terms of individual differences in a specific population. 

Of course, the formula for reliability contains the true score, which is unob-
servable. The conceptual strategy of classical test theory consists in rewriting the 
formula for reliability in terms of potentially observable terms. Lord & Novick 
(1968) discuss the matter on p. 58-59; what follows here could be viewed as a 
conceptual reconstruction of this development. 

First, suppose that we had the ability of brainwashing subjects inbetween mea-
surements. In this case, determining reliability would pose no difficulties. The 
determination of true score variance would still be impossible at any given time 
point, but because replications would be parallel by definition, we could use the 
correlation between the observed scores on two administrations, X and X'. as fol-
lows. Assume, without loss of generality, that the expected value of the test scores 
in the population is zero. The correlation between the observed scores at two time 
points would equal: 

°xx> £{TT') 
Pxx' = = — -• (2.5) 

axox1 oxox' 
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See Lord & Novick, 1968, p. 58, for the details of the derivation. This almost 
equals Equation 2.4, which defines reliability. All that remains to be done is to 
rewrite the term £(TT') as a\, and the term ax&x' as ax. If this step can be 
justified, the quantity a\fa2

x, which is unobservable in principle, has been rewritten 
as the quantity pxx', which is observable in principle. This would create a possible 
connection to the analysis of empirical data. Thus, what we have to do is to 
interpret a covariance between two variables as the variance of a single variable, 
and the product of two standard deviations of different variables as the variance of 
a single variable. This requires that the two variables in question are one and the 
same. That is, we need to be able to say not only that T = T'', in the sense of being 
numerically equal, but that T = T' , in the sense that T and X" are synonymous. The 
reason for this is not primarily syntactical: pxx' will be numerically equal to pXT 
as soon as the true scores and error variances on two tests x and x' are numerically 
equal for each subject, even if this is by accident. For a consistent interpretation of 
the theory, however, these quantities have to be equal by necessity. 

As an illustration of this point, consider the following situation. Suppose that 
it were the case that height and weight correlated unity in a population of objects, 
and that these attributes were measured on such a scale that the expected value 
of the measurement of weight with a balance scale, and the expected value of the 
measurement of length with a centimeter, happened to always be numerically equal. 
One could then use the correlation between height and weight as an estimate of the 
reliability of the balance scale. As a pragmatic empirical strategy, this could work. 
But theoretically, one cannot admit such a situation in definitions and derivations 
like the above, because it would not be a necessary, but a contingent fact that the 
expectations of the measurement procedures were equal; they might very well not 
have been. Thus, from a semantic perspective, equating the correlation between 
parallel tests with the reliability of a single test makes sense only if the two tests 
measure the same true score. This requires that the true scores on the first and 
second administration are not merely numerically equal, but synonymous. 

Can we take the required step while retaining a consistent semantic interpreta-
tion of the theory? It is one of the intriguing aspects of classical test theory that 
this can be done. The reason for this is that the true scores in question are not only 
syntactically, but also semantically indistinguishable. This is because, for subject 
i. both U and t\ are defined as the expected value on testa;, where the expectation 
is interpreted in terms of repeated administrations with intermediate brainwashing. 
It may seem that, because U is the expected value of the observed scores on the 
first administration of test x, and t\ is the expected value of the observed scores 
on the second administration of test x, U and t\ are distinguishable with respect 
to their temporal position. But the role of time in the brainwashing thought ex-
periment is a peculiar one. The thought experiment uses the term 'replications' in 
order to make the application of the expectation operator to the individual sub-
ject a little more digestible than it would otherwise be, but the idea that we are 
talking about replications in the actual temporal domain is an illusion. This may 
be illustrated through the classical test theory models for change (Mellenbergh & 
Van den Brink, 1998). In such models, the difference between subject i's observed 
scores on administrations 1 and 2 of the same test, Xt2 — X»i, must be considered 
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to be an estimator of i's true gain score, defined as t*2 — Ul- Each of the true 
scores is thus defined as the expected value at a single time point. Although the 
thought experiment creates the impression that the expectation can be interpreted 
in terms of temporally separated replications of the same test, the term 'brainwash-
ing' must be taken to mean that the subject is restored to his original state - not 
only with respect to memory, learning, and fatiguing effects, but with respect to time 
itself. Otherwise, classical test theory concepts such as the true gain score would 
be completely uninterpretable. Within the brainwashing thought experiment, the 
true scores on replications must be considered synonymous. Thus, Lord & Novick 
are justified in stating that T = T', and are able to write 

2 

PXX' = - f = PXTX, (2-6) 
aX 

which completes the first part of their mission. 
Obviously, the development sketched above only takes us halfway in making the 

connection between classical test theory and the analysis of empirical data. What 
we want is not to express reliability in terms of counterfactual relations, which 
involve brainwashing entire populations, but to express it in terms of actual relations 
between observed variables in real data. So, Lord & Novick's brainwash has had 
its best time; it has been crucially important in deriving the main psychometric 
concepts in classical test theory, but now it has to go. Can we get rid of it? The 
answer is: yes and no. An exact estimate of reliability cannot be obtained from 
empirical data, so in this sense there is no way to get around the issue. We can, 
however, settle for lower bounds on reliability, which can be estimated from the 
data under rather mild conditions. In the final analysis, however, the true score 
must be invoked again to conceptualize what such a lower bound is a lower bound 
for. 

Constructing empirical estimates of reliability 

The first option for constructing estimates of reliability is to neglect the conditions, 
that preclude the interpretation of actual repeated measurements as identical with 
the thought experimental replications, by simply ignoring the problem. This can be 
done in two ways: either we may assume that two actual replications of the same 
test are parallel, or we may assume that two distinct tests are parallel. The first of 
these methods is known as the test-retest method, and the second forms the basis 
of the parallel test method, the split-halves method, and the internal consistency 
method. 

Test-retest reliability The test-retest method is based on the idea that two ad-
ministrations of the same test may be regarded as one administration of two parallel 
tests. If this were the case, the population correlation between the scores on these 
administrations would be equal to the reliability of the test scores. However, the 
assumption that repeated administrations are parallel introduces a substantial as-
sumption into the technicalities of classical test theory, namely that the trait in 



26 True scores 

question is stable. On the basis of this observation, it has been suggested that the 
test-retest correlation should be called a 'stability coefficient'. It should be noted, 
however, that the between-subjects correlation cannot distinguish between situa-
tions where individual true scores are stable and situations where they increase or 
decrease by the same amount. Therefore, the term 'stability' can only be taken to 
refer to the stability of the ordering of persons, not to the stability of the construct 
itself. Note also that the method necessarily confounds differential change trajec-
tories and unreliability. We do not know, for most constructs, whether change 
trajectories are homogeneous or heterogeneous across subjects. This, of course, 
poses a problem for the interpretation of the test-retest correlation as a reliability 
estimate. 

A second problem is that, in contrast to the thought experimental replications, 
actual replications are temporally separated, which creates the problem of choosing 
an appropriate spacing of the replications. Is reliability to be estimated by test-
retest correlations based on immediate retesting? Retesting after a day? A month? 
A year? Since classical test theory cannot provide an answer to these questions, 
the test-retest scheme must introduce decisions which are, from a methodological 
perspective, arbitrary. However, these arbitrary decisions concerning the spacing of 
the replications will generally influence the value of the test-retest correlation. Does 
this mean that there is a distinct reliability for each choice of temporal spacing? 
Or should we consider the approximation to reliability to be systematically affected 
by temporal spacing, so that, for example, the estimate becomes better as we wait 
longer with retesting? Or does the approximation decrease with the time elapsed 
since the first administration? Or is this relation curvilinear so that, for example, 
the approximation is optimal after 1.2 weeks? And should we consider the relation 
between the quality of the reliability estimate and elapsed time to be the same 
across testing situations? Across groups? Across constructs? Why? It seems 
that these issues cannot be satisfactorily addressed, either from a psychological, a 
philosophical, or a methodological perspective. 

In view of these issues, it is interesting that the test-retest method has recently 
been defended by Brennan (2001), on the grounds that reliability is intelligible only 
when interpreted in terms of replications of full test forms. This is plausible, but 
the concept of reliability should be considered within the definitions of classical 
test theory. Classical test theory defines the true score in terms of a thought ex-
periment, and since the syntactical notation of reliability contains the true score 
as one of its elements, this definitional issue carries over to the interpretation of 
reliability. Upon a consistent interpretation of classical test theory, reliability is the 
proportion of variance in observed scores that would be attributable to variance 
in true scores; for the test-retest correlation to be an estimate of this proportion, 
the entire population of subjects must be brainwashed inbetween repeated admin-
istrations. Therefore, reliability must conceptually be interpreted in terms of the 
brainwashing thought experiment; it cannot be defined in terms of actual replica-
tions because these simply will not behave according to the axioms of classical test 
theory. Practically, of course, one may suppose that the actual test-retest correla-
tion is an estimate of the thought experimental one, but in this case it has to be 
assumed that relevant characteristics of the thought experimental replication are 
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retained in an actual replication. Unfortunately, the essential characteristics involve 
parallelism and independence of repeated measurements, i.e., the assumption that 
the replications could be viewed as realizations of a stationary random variable. 
This is extremely unrealistic. Thus, the interpretation of the test-retest correlation 
as reliability (i.e., as the concept is defined in classical test theory through equation 
2.4) requires a substantial leap of faith. 

Using correlations between distinct tests The second strategy, which encom-
passes the methods of parallel tests, split-halves, and internal consistency estimates, 
is based on the idea that two distinct tests could be parallel. First, consider the 
parallel test method. This method assumes that a simultaneous administration 
of two different tests could be viewed as approximating two thought experimental 
replications of a single test. In case we had distinct parallel tests, the correlation 
between them could then be taken to be a direct estimate of the reliability of the 
test scores. There are two problems with this method. 

The first is a practical problem, namely that the search for parallel test forms 
has been unsuccessful to date; this is not surprising, because the empirical require-
ments for parallelism (equal means, variances, and covariances of observed scores) 
are rather demanding. Further, there is no substantial psychological reason for 
assuming that two tests for, say, spatial reasoning, should have equal means and 
variances; nor is there a reason for regarding such tests as theoretically superior to 
tests that are not parallel. 

The second problem is of a theoretical nature, namely that the idea that two 
distinct tests could be parallel seems semantically inconsistent. We have seen, in 
Section 2.2.1, that classical test theory interprets the true score on a testa; as the 
expected value on a number of repeated independent administrations of that test. 
That is, the true score is explicitly defined in terms of the test in question. If we 
now turn to a distinct test y, the true score on this test is semantically interpreted 
in terms of repeated independent administrations of test y. Earlier in this section, 
we have seen that, to interpret the correlation between parallel test scores as a 
reliability estimate, the covariance between the two true scores on these measures 
must be interpreted as the variance of one true score, that is, it must be assumed 
that T = T'. This can be done within the counterfactual state of affairs, defined in 
Lord & Novick's brainwashing thought experiment, exactly because T and T' are 
synonymous. However, the true scores on distinct tests x and y are semantically 
distinguishable, simply because they are defined with respect to different tests. 
They may be empirically equal, but this does not make them logically identical. 
This is to say that the identity of the true scores on repeated administrations with 
intermediate brainwashing, as used in the derivation of equation 2.4, is a necessary 
truth; but the empirical equality of expected values on distinct tests is a contingent 
truth (if it is a truth at all). This may be illustrated by noting that the former 
equivalence will hold by definition (one does not even have to administer the test to 
find out), while the observation that the latter holds in the present testing occasion 
does not guarantee that it will hold tomorrow. 

The problem here is not so much that, as a hypothesis formulated independently 
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of the classical test theory model, two distinct tests could not be taken to measure 
the same attribute; this hypothesis could certainly be added, and would in effect 
specify a latent variable model. The problem is rather that classical test theory itself 
has insufficient conceptual power to do the trick. The syntax of classical test theory 
cannot express what it means for two distinct tests to measure the same attribute, 
if the attribute is identified with the true score. It is only possible to write down, 
syntactically, that two tests measure the same true score. However, semantically, 
this makes sense only if these two 'tests' are in fact replicated administrations of 
the same test, as they are in the brainwashing thought experiment. But of course 
the brainwashing thought experiment is completely unrealistic. This is why the 
theory must take recourse to the strange requirement of tests that are distinct 
and yet parallel. What the syntactical derivations, as well as the semantics, of 
classical test theory imply is that parallel measurements consist in two independent 
administrations of the same test. A procedure that could reasonably be said to 
conform to the requirement of parallelism is. for example, the replicated length 
measurement of a number of rods with the same centimeter. With two distinct 
psychological items or test scores, however, this logic is, at best, artificial and 
contrived; at worst, it is inconsistent. Thus, it is difficult to see how the method 
could yield theoretically interesting results, since it seems built on a contradiction. 
It is also obvious that the method has no practical value, because tests that satisfy 
at least the empirical equivalence needed for exact reliability estimates to work, 
are hard to come by. The parallel test method is thus useful for only one purpose, 
namely for the derivation of reliability formulae. It cannot be taken serious as an 
empirical method. 

In the pursuit of exact reliability estimates, two methods have been proposed 
that may serve as alternatives to the parallel test method. These are the split-
halves and internal consistency methods. The split-halves method splits a test in 
two subtests of equal length, assumes that the subtests are parallel (or constructs 
them to be nearly so; Gulliksen, 1950; Mellenbergh, 1994), computes the correla-
tion between the total scores on subtests, and yields an estimate of the reliability of 
total test scores by using the Spearman-Brown correction for test lengthening. In-
ternal consistency formulae such as the KR2o and coefficient a extend this method. 
They can be interpreted as the average reliability coefficient as derived from the 
split-halves correlation, where the average is taken over all possible split-halves. If 
the split-halves are parallel, the resulting quantity yields an exact estimate of the 
reliability of the total test scores. Since parallelism is as troublesome for split-halves 
as it is for full test forms, these methods fail for the same reasons as the parallel 
test method. 

Lower bounds The exact estimation of reliability from observed data is thus im-
practical and theoretically questionable. This has prompted classical test theo-
rists to look at worst-case scenarios, and to search for lower bounds for reliability 
(Guttman, 1945; Jackson & Agunwamba, 1977). For instance, it can be proven 
that, if test forms are not parallel, but satisfy weaker assumptions such as essential 
tau-equivalence, reliability estimates like Cronbach's a provide a lower bound on 
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reliability. Thus, if a equals .80 in the population, then the reliability of the test 
scores is at least .80. This is a clever strategy, and the researcher who follows it 
seems to be fairly safe. In essence, the reasoning which could be followed is: no 
matter how bad things may be, the reliability of my test is always higher than the 
(population) value of the lower bound that is computed. This is probably the most 
viable defense that could be given for the standard practice in test analysis. 

Note, however, that the true score does not do any work in the computation 
of any of the statistics discussed. The test-retest correlation is, well, a test-retest 
correlation, and internal consistency is just a transformation of the average split-
half correlation. Both could be used in test analysis, and judged for their merits, 
without recourse to classical test theory as a theory of measurement. The statistical 
machinery will do just fine. However, this does not mean that classical test theory 
is irrelevant to the way the analyses are used. For the interpretation of test-retest 
correlations or average split-halves correlations as reliability estimates does involve 
classical test theory. What is obtained in the analysis is a test-retest or average 
split-halves correlation, but when these are interpreted in terms of reliability, they 
are interpreted as estimates of, or lower bounds for, the quantity denoted as p2

XT , 
and this quantity does involve the true score as defined in classical test theory. 
Thus, what we observe here is an inference from empirical relations (involving only 
observables) to theoretical relations (involving observables and unobservables). This 
type of inference is, of course, nothing new, for it is the gist of science. What is 
typical and unusual here, is that the inference does not come at a price. The 
researcher gets the theoretical interpretation in terms of unobservable true scores 
for free. The question, however, is what this theoretical interpretation is worth: 
What is it exactly, that we are informed about? What is the status of the true 
score? 

2.2.3 The ontological stance 
Of all psychometric concepts, reliability plays the most important role in practi-
cal test analysis. Of course, all researchers pay lip service to validity, but if one 
reads empirical research reports, reliability estimates are more often than not used 
as a primary criterion for judging and defending the adequacy of a test. In this 
sense, reliability is the poor man's validity coefficient, as Rozeboom (1966-a) has 
observed. I think that the analysis presented above casts doubt on whether relia-
bility deserves this status. The theoretical acrobatics necessary to couple empirical 
quantities, like test-retest correlations, to reliability, as defined in classical test the-
ory, are disconcerting. Coupled with the fact that these coefficients are used and 
interpreted rather uncritically, the observation that "classical measurement theory 
[is] the measurement model used in probably 95% of the research in differential 
psychology" (Schmidt Sz Hunter. 1999, p. 185) seems to be a cause for concern, 
not for celebration. The problems grow even deeper when one considers that 95% 
of the researchers involved in research in differential psychology are probably not 
doing what they think they are doing. For no concept in test theory has been so 
prone to misinterpretation as the true score. 

As has been noted earlier in this chapter, it is tempting to think that the distinc-
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tion between true scores and observed scores is the same as the distinction "between 
observed scores and construct scores" (Schmidt & Hunter, 1999, p.189), or that "the 
true score is the construct we are attempting to measure" (Judd. Smith, & Kidder. 
1991, p.49), or that it is the score "that would be obtained if there were no errors 
of measurement" (Nunnally, 1978, p. 110). This is the way the matter is often 
explained to students, and it is the way many researchers think about psychological 
measurement. However, the identification of the psychological construct with the 
true score of classical test theory is not without problems. 

There are two problematic assumptions underlying the platonic interpretation 
of the true score. The first assumption underlying the idea that the true score is the 
real score on a psychological construct is the result of a confound of unreliability 
with invalidity. This is a recognized fallacy, but it is so common and persuasive that 
it deserves a thorough treatment. The second assumption concerns the ontological 
status of the true score itself. It will be argued here that the entire idea that a 
person has a true score, as defined in classical test theory, is unintelligible - except 
when interpreted in a thought experimental sense. So interpreted, it has the status 
of a dispositional concept, but, oddly enough, it specifies dispositional properties 
with respect to an impossible sequence of situations; namely, the thought experi-
mental replications. The true score is therefore best thought of as a fiction. Finally, 
in contrast to psychological constructs, the true score cannot be conceptualized in-
dependently of the test in question. This is why the true score must be seen as a 
concept that is best interpreted in an operationalist sense. 

True scores as construct scores 

The idea that true scores are valid construct scores can be seen as a confound of 
reliability and validity. These are qualitatively different concepts: Reliability has 
to do with the precision of the measurement procedure, while validity involves the 
question whether the intended attribute is indeed being measured. For the simple 
reason that no formal model can contain its own meaning (it cannot itself say what 
it is a model for), it seems obvious that this interpretation is incorrect from the 
outset. However, although various authors have warned against it, the platonic 
true score interpretation is like an alien in a B-movie: No matter how hard you 
beat it up, it keeps coming back. A recent revival has, for example, been attempted 
by Schmidt k Hunter (1999; see Borsboom & Mellenbergh, 2002, for a criticism). 
True scores are not valid construct scores, and neither do they necessarily reflect 
construct scores. 

At the present point in the discussion, the concept of validity is introduced, 
and therefore the relation of measurement has become important. In itself, it is 
interesting that, in the entire discussion so far, the term 'measurement' has remained 
unanalyzed. We have been able to review the assumptions, semantics, and empirical 
applications of classical test theory without making the meaning of this concept 
explicit. This is typical of classical test theory and contains an important clue as to 
why the identification of true scores with psychological constructs is so problematic. 
To see this, take it as given that the objective of psychological testing is to measure 
constructs, or, if you like, the phenomena to which constructs refer. If true scores 



2.2 Three perspectives on the true score 31 

could be taken to be identical to construct scores, then it should be possible for 
classical test theory to rewrite the relation of measurement, interpreted as a relation 
between observed scores and construct scores, as a relation between observed scores 
and true scores. It turns out that classical test theory cannot do this. The reason 
for this is that, because the theory is statistical in nature, it is natural to conceive of 
the relation between observed scores and construct scores statistically. This is also 
the position taken by Lord & Novick (1968, p. 20), who say that ' . . . an observable 
variable is a measure of a theoretical construct if its expected value is presumed 
to increase monotonically with the construct' and ' . . . t o be primarily related to 
construct being defined'. This is similar to the measurement relation as conceived 
in item response models, where the expected value on items is related to the position 
on the latent variable. It follows from this conceptualization, however, that true 
scores cannot play the role of construct scores. This is because the true score is itself 
defined as the expected value on a test, so that identifying true scores with construct 
scores and substituting this in Lord k. Novick's conception of measurement leads 
to the following definition: ' . . . an observable variable is a measure of a [true score] 
if its [true score] is presumed to increase monotonically with the [true score]'. This 
can hardly be considered enlightening. 

In contrast to, for example, latent variable models, classical test theory does not 
have the conceptual power to represent the construct in the model. The relation 
of measurement must thus be seen as a relation between true scores and something 
else. This is in perfect accordance with the way validity is treated in classical test 
theory, namely as the correlation between the true scores on the test in question 
and an external criterion. However, it is inconsistent with the idea that true scores 
are construct scores. It is actually rather strange that this misconception occurs 
at all, because classical test theory defines the true score without ever referring to 
psychological constructs or a measurement relation. The theory does not contain the 
identity of true scores and construct scores - either by definition, by assumption, 
or by hypothesis. Moreover, it is obvious from the definition of the true score 
that classical test theory does not assume that there is a construct underlying 
the measurements at all. In fact, from the point of view of classical test theory, 
literally every test has a true score associated with it. For example, suppose we 
constructed a test consisting of the items "I would like to be a military leader", 
u.10/\/-05 + .05 = .. ", and "I am over six feet tall". After arbitrary - but consistent 
- scoring of a person's item responses and adding them up, we multiply the resulting 
number by the number of letters in the person's name, which gives the test score. 
This test score has an expectation over a hypothetical long run of independent 
observations, and so the person has a true score on the test. The test will probably 
even be highly reliable in the general population, because the variation in true scores 
will be large relative to the variation in random error (see also Mellenbergh. 1996). 
The true score on this test, however, presumably does not reflect an attribute of 
interest. The argument shows that it is very easy to construct true scores that have 
no substantial meaning in terms of scientific theories, and are therefore invalid upon 
any reasonable account of validity. 

It is also very easy to construct situations in which there is a valid construct 
score, while that score differs from the true score as classical test theory defines 
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it. Consider, for example, the following example, which is based on an example 
by Lord & Novick (1968. p.39 ff.). At present, whether a patient has Alzheimer's 
disease or not cannot be determined with certainty until the patient is deceased 
and autopsy can be performed. In other words, the diagnostic process, taking 
place while the patient is still alive, is subject to error. We can conceptualize the 
diagnostic process as a test, designed to measure a nominal variable with two levels 
('having the disease' and 'not having the disease'). Because this variable is nominal, 
we may assign an arbitrary number to each of its levels. Let us assign the number 
' 1 ' to a patient who actually has Alzheimer's, and the number '0' to a patient who 
does not. This number represents patient i's construct score c; on the nominal 
variable 'having Alzheimer's'. Thus, a patient who actually has Alzheimer's has 
construct score c, = 1. and a patient who does not have Alzheimer's has construct 
score Ci = 0. 

In practice, the construct score cannot be directly determined. Instead, we 
obtain an observed score, namely the outcome of the diagnostic process. This 
observed score is also nominal, so we may again assign an arbitrary number to each 
of its levels. Let us code patient i's observed score Xi as follows. The value Xi = 1 
indicates the diagnosis 'having Alzheimer's', and the value Xj = 0 indicates the 
diagnosis 'not having Alzheimer's'. 

The diagnostic process is imperfect and therefore the test scores are subject to 
error. Now suppose that the test is valid, so that misclassifications are due solely 
to random error, for example, to equipment failures that occur at random points in 
time. This renders the observed score a random variable X. What is the true score 
on the test? It is tempting to think that patient's i's true score, £;, on the diagnostic 
test is equal to the construct score (i.e., ti = c,). Specifically, the infelicitous use 
of the adjective 'true' suggests that a patient who actually has Alzheimer's, i.e., a 
patient with construct score Cj = 1, also has a true score of U = 1 on the test. For 
this indicates the diagnosis 'having Alzheimer's', and it is, after all, true that the 
patient has that disease. 

This interpretation of the true score is not, in general, consistent with classical 
test theory. For suppose that the sensitivity of the diagnostic test is .80. This 
means that the probability that a patient who actually has Alzheimer's will be 
correctly diagnosed as such is .80. Now consider the true score of a patient who has 
Alzheimer's . i.e., a patient with construct score c% = 1. This patient's true score is 
not tt = 1, because the true score of classical test theory is equal to the expectation 
of the observed score, which is t, = E(Xt | Cj = 1) = .80. Suppose further that the 
sensitivity of the test is .70. This means that the probability that a patient who 
does not have Alzheimer's will be correctly diagnosed is .70. For a patient who does 
not have Alzheimer's (i.e., a patient whose construct score is Cj = 0), the true score 
is equal to ti = E{Xj | c, = 0) = .30. In both cases the true score and construct 
score yield different values4. 

It can now be seen why the identification of true scores with construct scores 
is logically inconsistent with classical test theory in general. If the test in the 

4 Note that the argument implicitly uses a latent class formulation, where the construct score 
indicates class membership; this suggests that latent variables can be used to extend the model in 
the required direction. It will be argued in the next chapter that this is indeed the case. 
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example contains error, this means that there is misclassification; and if there is 
misclassification, the expected value of the observed score can never be equal to 
the construct score. So, if measurements contain random error, the identification of 
true scores with construct scores is logically inconsistent with classical test theory in 
general. It should be noted that Lord and Novick (1968) themselves were thoroughly 
aware of this, since they explicitly state that "in general the two concepts and 
definitions [of true scores and construct scores] do not agree" (p. 41). 

It is clear that the identification of construct scores with true scores is fun-
damentally incorrect. The objective of psychological measurement is to measure 
psychological constructs, but classical test theory cannot express the relation of 
measurement as a relation between observed and true scores. Rather, the theory 
must conceptualize the measurement relation as a relation between true scores and 
psychological constructs, which shows that these should not be considered identi-
cal. This conclusion is strengthened by the observation that we can easily construct 
cases where a true score 'exists', but where it is invalid in that it does not have 
substantial meaning in terms of a theory. We can also construct cases where there 
is a valid score, but where that score is not the true score. 

In view of these problems, it is interesting and elucidating to inquire under 
what conditions the true score and the construct score could be taken to coincide. 
It seems that the situation, in which this would be the case, is exactly the situation 
as the theory of errors portrays it. Namely, if the validity of the test has been 
ascertained, the observations are continuous, the attribute in question is stable, 
and deviations from the true value over actual replications are produced by a large 
number of independent factors. In this case, the axioms of classical test theory 
will be satisfied by actual, rather than thought experimental, replications - in fact, 
there would be no need for a thought experiment. It also seems that the number of 
psychological measurement procedures, for which these assumptions could be taken 
to hold, equals zero. Thus, it is safe to conclude that, in psychological measurement, 
the true score cannot be taken to coincide with the construct score. 

Do true scores exist? 

The identification of true scores with constructs is a serious mistake that, unfortu-
nately, permeates much of the literature on psychological measurement. The fact 
that true scores cannot be considered in this way docs not, however, entail that 
true scores cannot exist. We may suppose that true scores and construct scores 
both exist, but are not identical; for example, we could imagine true scores to exist 
quite independently of the construct, but to be systematically related to that con-
struct. This is the way Lord & Novick construct the relation of measurement, as we 
have seen, and it is also the way that latent variable models sometimes formulate 
the situation. The question then becomes how the existence of true scores could 
be interpreted. Is there a plausible interpretation that could locate the true score 
in reality, i.e., conceive of it as an objectively existing entity, without becoming 
inconsistent or downright absurd? It is argued in this section that such a realist in-
terpretation is unreasonable. When the classical test theorist invites us to imagine 
the existence of a true score, most of us will be inclined to grant him this much. We 
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will see, however, that it is completely unclear what we are supposed to imagine. 
The reason for this is that it is difficult, or even impossible, to give a serious ac-
count of the distribution on which the true score is defined. The problem is that the 
thought experiment, that is supposed to define this distribution, does not specify 
sources of random error, and that the almost universally endorsed interpretation of 
random error is circular. Moreover, the assumption that true scores exist in reality 
does not lead to testable predictions, which strongly invites the application of Oc-
cam's razor - especially because the true score leads to a needless multiplication of 
theoretical entities, which is undesirable. 

Where does error come from? The conceptualization of the true score as an ex-
pected value is ill-defined. For it is entirely unclear under what circumstances the 
replications mentioned in Lord & Novick's brainwashing thought experiment should 
occur. The primary problem is that it is unclear where the random variation is sup-
posed to come from. This issue is usually circumvented in treatises on psychological 
measurement. These suggest that random error is due to unsystematic factors af-
fecting the observations. For example, the typical examples of unsystematic errors 
are: Mr. Brown had a headache at the particular testing occasion; Mr. Brown acci-
dentally filled in "yes", while he intended to fill in "no"; Mr. Brown was distracted 
by the noise of schoolchildren playing nearby, etc. However, identifying this, in 
itself reasonable, conceptualization of random error with the formal term indicated 
by Ei is circular. 

To see this, first recall that the true score cannot be conceptualized as the aver-
age score over actual replications. This would violate the basic assumptions of the 
model, especially those concerning independence and parallelism of repeated mea-
surements. For the same reason, error cannot be conceptualized as the lump sum 
of all variables that cause variation in the observed scores over actual replications: 
The true score is defined through a thought experiment, and so is the error score. 
Further, we have seen that the semantics of classical test theory do not only require 
that Mr. Brown is brainwashed inbetween measurements, but also that Mr. Brown 
takes a trip in a time-machine inbetween measurements, because the true score must 
be conceptualized as being instantiated at a particular time point. What, then, is 
supposed to cause the fluctuations, that might generate the probability distribution 
on which the true score is defined, on this particular time point? In other words: 
What varies in the replications under consideration? 

There are three possible answers to this question. The first is: Nothing. In 
this interpretation, we have a quite mysterious source of randomness, which is sup-
posedly inherent to Mr. Brown himself. Test theorists holding this interpretation 
should definitely have a chat with people working in quantum mechanics, for it 
would follow that human beings and quarks have more in common than one might 
think. But certainly, the random error would not come from variations in 'irrel-
evant' variables, because there would not be variation at all. This interpretation 
does therefore not return the typical idea of random error as discussed above. 

The second answer to the question is: Everything. Now we imagine Mr. Brown 
taking his United Nations test not only in the original testing situation, but also 
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in the jungle, in space, under water, while playing a game of tennis, and so on. 
This interpretation, however, neither returns the typical idea of random error. For 
nothing prohibits Mr. Brown's constitution to be changed in such a way that, say, 
his social desirability level goes down, or, more drastically, he turns deaf, or, still 
more dramatically, he becomes identical to a different person (say, Kofi Annan). 
Therefore, this interpretation forces us to include under the header 'random error' 
factors that we do not usually view as such - social desirability, for instance, is the 
classic example of a variable that is supposed to influence test scores systematically, 
not randomly. 

The third answer that we may give is: Some things will change, and some will 
not. This, however, requires that we distinguish between factors that are variable 
across replications, and factors that are constant. Doing this allows us to create the 
desired interpretation of random error, but at the price of circularity. For which 
things are supposed to change in order to return the desired interpretation of ran-
dom error? Well, those things that are supposed to be unsystematic. Which things 
are that? Supposedly, Mr. Brown's headache, schoolchildren playing nearby, etc. 
But why these things? Because they are influential and change across replications. 
And why do they change? Because we have included them as varying in the thought 
experiment. Now we are back at square one. Thus, a platonic conception of error, as 
reflecting unsystematic influences on the observed testscore, involves a circularity in 
reasoning. It actually allows us to create any interpretation of random error we de-
sire, by incorporating the factors we want to subsume under that header as variable 
in the thought experimental replications. Nothing is gained in this interpretation. 

Clearly, the true score is ill-defined as an expected value, because the distri-
bution that is supposed to generate it cannot be characterized - not even roughly. 
The thought experiment that should do this does not specify the conditions under 
which replications should occur, except for the fact that these should be statistically 
independent, which, ironically, is exactly the reason that such replications cannot 
in general be equated with actual replications. Moreover, there is a serious problem 
in the interpretation of the thought experimental replications. Not only does clas-
sical test theory fail to provide grounds for choosing between the above accounts 
of random error, but the available accounts are either mysterious, inadequate, or 
circular. The thought experiment does not elucidate the situation. Mr. Brown's 
brainwash adds little to the syntactic formula U = 6(Xi), but rather obscures the 
fact that taking the expectation of a distribution, which is defined at a particular 
moment on a particular person, is a doubtful move. Thus, when Lord & Novick 
invite the reader to assume the existence of a true score, it is not at all clear what 
the reader is supposed to believe in. 

The multiplication of true scores The true score is ill-defined, but this, in itself, 
is not sufficient reason for rejecting the realist interpretation. Many concepts lack 
an unambiguous definition; surely, most psychological constructs do. The inabil-
ity to define a construct unambiguously does not force us to the conclusion that 
the phenomena denoted by that construct therefore cannot exist. In many cases, 
definitions are the result of doing research, not a prerequisite for it. Indeed, much 
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scientific progress can be described in terms of a continuous redefining of scientific 
constructs. 

However, what we may require from a realist interpretation of true scores is 
some kind of testability. This does not mean that theories must be falsifiable in 
the strict sense of Popper (1959) - in psychology, this would probably leave us 
with no theories at all - but there must be some kind of connection to observations 
that takes the form of a prediction. In theories of psychological measurement, 
this connection usually takes the form of discriminative hypotheses. For example, 
the intelligence tester may concede that he cannot give a definition of intelligence, 
but he can formulate the hypothesis that the number series ' 1 1 2 3 5 8 . . ' does 
measure intelligence (in a population of normal adults), while the item 'I like to go 
to parties' does not. This is, for example, the way that constructs are related to 
testable predictions in latent variable modeling. In the case of true score theory, no 
such connection can be made. There are two reasons for this. First, according to 
the classical test model, a distinct true score exists for literally every distinct test. 
Second, the theory cannot say what it means for two distinct tests to measure the 
same true score, except through the awkward requirement of parallelism. Therefore, 
the true score hypothesis does not yield testable predictions in the discriminative 
sense discussed above. 

Consider the first point. The definition of the true score as an expected value 
leaves no room for saying that some tests do measure a true score, and some do not: 
We may always imagine a series of thought experimental replications and define the 
true score as the expected value of the resulting distribution. This means that 
every imaginable test has an associated true score, as has been illustrated in the 
previous section. Admitting the true score into reality thus forces the conclusion 
that every person is a walking collection of infinitely many true scores - one for 
every imaginable testing procedure. It would seem that, in this way, reality gets 
rather crowded. 

Second, classical test theory cannot posit the true score as a hypothesis gen-
erating entity. This could, in principle, be done if it were reasonable for, say, the 
intelligence tester, to say that a number series item measures the same true score 
as a Raven item, similar to the way different items can be related to a single latent 
variable in item response models. Within true score theory, the only way to say that 
two tests measure the same true score is by saying that the tests are parallel. How-
ever, there is absolutely no reason to suppose that two distinct items that measure 
the same construct should be empirically parallel. Moreover, it has been shown in 
section 2.2.2 that the very idea, that two items that are empirically parallel measure 
the same true score, is inconsistent in its own right: The only item that could be 
said to measure the same true score as the number series item '1 1 2 3 5 8 ..' is the 
number series item '1 12 3 5 8. . ' itself. Of course, one could reason that two items 
that measure the same construct should have, for example, perfectly correlated true 
scores. This does yield testable predictions, but these do not result from the true 
score hypothesis itself. Rather, they result from a hypothesis concerning relations 
between true scores; a hypothesis that, in turn, is based on the idea that the items 
measure the same construct - in fact, it is based on a latent variable hypothesis 
and specifies Jöreskog's (1971) congeneric model. The construct theory can specify 
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testable discriminative hypotheses ("these items measure intelligence, but those do 
not'), but the hypothesis that there exists a true score for a given measurement 
procedure cannot. 

Thus, upon a realist interpretation, the true score is a metaphysical entity of 
the worst kind: Posing its existence does not lead to a single testable hypothesis. 
This does not mean that true scores, or classical test theory, are useless; obviously, 
the true score may figure in a set of hypotheses based on substantive theory, as it 
does in the congeneric model. It means that the true score hypothesis in itself is 
not capable of generating testable predictions. 

Operationalism and true score theory 

Two conclusions must be drawn. First, it is unclear what a true score is, because the 
probability distribution that is supposed to generate it lacks sufficient specification. 
Second, the true score hypothesis, in itself, does not lead to predictions. Note that 
these conclusions are not problematic for the true score concept, or for classical test 
theory in general. They are only problematic for a full-blown realist interpretation 
of classical test theory. It seems that such an interpretation is untenable. 

However, just like the lack of correspondence between construct scores and true 
scores should not, in itself, bother the classical test theorist, the fact that a realist 
conception of true scores is problematic does not pose a problem for classical test 
theory either. It does suggest that we consider different ways of conceptualizing 
the true score's ontological status. Since there are enough alternatives to realism, 
the question becomes within which of these the true score could find a home. An 
adequate account of the theoretical status of true scores also illuminates what kind 
of philosophical outlook would be consistent with an identification of true scores 
with construct scores. The observation, that such an identification is completely 
unreasonable, suggests that the philosophical viewpoint that is consistent with it 
will also be completely unreasonable. In fact, the philosophical viewpoint that is 
consistent with classical test theory (as well as with the identification of constructs 
with true scores) is the most unreasonable of all, namely operationalism. 

Operationalism (Bridgman, 1927) holds that the meaning of a theoretical term 
is synonymous with the operations by which it is measured. Interestingly, we have 
seen that the true score is defined without reference to anything but a measurement 
process. The true score is thus completely defined in terms of a series of operations: 
It is the proportion of times Mr. Brown would be in favour of the United Nations 
if he were tested infinitely many times. That the operations in question are hy-
pothetical, and cannot be carried out, is a peculiar feature of the true score, but 
it does not preclude the conclusion that the true score is defined in terms of these 
operations, which is consistent with operationalism. 

The true score also has some typical problematic aspects that are essentially 
identical to those faced by the operationalist philosophy of measurement. It has 
been argued against that view, for example, that it leads to a multiplication of 
theoretical terms (Suppe, 1977). For example, suppose that the meaning of the 
theoretical term 'intelligence' is equated with the set of operations that lead to an 
IQ-score on the Stanford-Binet. It immediately follows that the WAIS, the Raven, 
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or any other intelligence test cannot also measure intelligence, because each test 
specifies a distinct set of operations. So. each measurement procedure generates 
a distinct theoretical concept. It is therefore conceptually difficult, if not impossi-
ble, for an operationalist to say what it means for two tests to measure the same 
construct. 

In classical test theory, we face essentially the same problem. The true score 
is defined in terms of the expected value on a particular test, and since each test 
generates a distinct expected value, it generates a distinct true score. Moreover, 
when the classical test theorist tries to express the idea that two tests measure 
the same true score, he runs into troubles that are comparable to those facing the 
operationalist. The only option, that comes close to saying that two tests measure 
the same true score, is to invoke the idea of distinct yet parallel tests. This is 
not only a highly contrived and unnecessarily strict requirement, that in no way 
matches the intended meaning of the proposition that the Stanford-Binet and the 
WAIS measure the same construct; it is essentially a concealed way of saying that 
the only test that measures the same construct as test x is test x itself. The same 
conclusion would be reached by an operationalist. 

The operationalist view also resolves some of the problems surrounding the true 
score, as exposed in previous sections. For instance, the operationalist does not 
refer to a construct or attribute score as something that exists in objective reality, 
and certainly not as something that exists independent of the measurement process. 
Thus, we cannot speak of length without mentioning a centimeter; we cannot speak 
of weight without referring to a balance scale; and we cannot consider intelligence 
apart from the IQ-test. To do this is, in the eyes of the operationalist, to indulge in 
intolerable metaphysical speculation. A difficulty for operationalism may be created 
by countering that objects would still have a definite length if there were nobody 
to measure it, and that people already possessed intelligence before the advent of 
IQ-tests. This argument, which of course invites realism about such attributes, can 
be deflected by invoking scores on attributes as dispositional properties. Rather 
than accepting my height, which is about 185 cm, as a property which I have 
independent of any measurement apparatus used, the proposed solution is that 
height is a dispositional property with respect to a measurement procedure: if I 
were measured with a centimeter, then the indicated height would be about 185 
cm. 

It is interesting to inquire whether the true score could also be interpreted as a 
disposition, and, if so, what kind of disposition it is. In this context, Van Heerden 
& Smolenaars (1989) propose a taxonomy of dispositions by cross-classifying them 
with respect to the question whether they concern heterogeneous or homogeneous 
behavior, and whether this behavior is recurrent or unique. An example of a dis-
position that refers to the unique, non-recurrent, presentation of a specific piece of 
homogeneous behavior is 'being mortal'. Saying that John is mortal expresses the 
fact that, upon the appropriate operations (e.g., poisoning him), John will decease. 
Dispositions may also refer to the recurrent presentation of homogeneous behavior. 
For example, the proposition 'Professor G. likes to go out with his Ph. D. students 
at conferences' refers to professor G.'s tendency to end up in a bar, in the company 
of his Ph. D. students, at conferences - usually at closing time. A proposition that 
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refers to the recurrent presentation of a heterogeneous set of behaviors is 'Professor 
J. is forgetful'. This proposition refers to professor J.'s tendency to display a wide 
variety of behaviors recurrently; for example, professor J. regularly finds himself in 
the secretary's office without remembering what he went there for, he forgets to 
remove the keys from his bicycle, etc. Finally, a disposition can refer to the unique 
presentation of a heterogeneous set behaviors. Van Heerden & Smolenaars (1989) 
give the example of 'being intelligent', which can be viewed as a disposition that 
may manifest itself once by completing the different (heterogeneous) tasks of an 
intelligence test. 

The latter example is interesting, because Rozeboom (1966-a) treats test scores 
in a similar manner. He observes that, in order to conceptualize the idea that 
'every person has an IQ-score', we must not interpret this sentence realistically 
(in which case it is obviously false), but in terms of the dispositional 'for every 
person it is true that, if that person were tested, he or she would obtain an IQ-
score'. In a similar vain, we can interpret the sentence 'every person has a true 
IQ-score' as 'for every person it is true that, if he or she were tested infinitely many 
times (with intermediate brainwashing and time-travel), the resulting observed score 
distribution would have an expected value'. In the terminology of Van Heerden & 
Smolenaars (1989), the behavior under consideration could be heterogeneous (if it 
refers to total test scores) or homogeneous (if it refers to item scores), but it would 
certainly be recurrent, although with respect to thought experimental replications5. 
The true score, as classical test theory defines it, may thus be considered to be a 
disposition, which specifies how a person will behave in a counterfactual state of 
affairs. 

The overburdening of reality, which follows from the realist interpretation of 
true scores, dissolves upon this view. I am not a walking collection of true scores 
on all imaginable tests; but it is the case that, if I were repeatedly administered 
an arbitrary test (with the appropriate brainwashing and timetravel), then my true 
score on that test would take on a definite value. Such dispositions are thus not 
located in reality, but rather specify characteristics of subjunctive, or in our case 
counterfactual, conditionals (Rozeboom. 1966-a). It is certainly the case that the 
true score, with its thought experimental character, must be considered an oddball 
among recognized dispositional properties (e.g., solubility, fragility), because these 
usually specify responses, of the object to which the dispositional property is as-
cribed, in situations that could actually occur. The concept of fragility is considered 
to be dispositional, because it is characterized by conditionals such as 'this vase is 
fragile, for if it were dropped, it would break'; and we may check this by actu-
ally dropping the vase. Similarly, all of the examples of Van Heerden & Smolenaars 
(1989) refer to actually realizable behaviors in realistic situations. This is the reason 
that Ryle (1949) characterizes dispositions as inference tickets. Rozeboom (1973) 
argues that such dispositional properties involve a realist commitment to underly-
ing characteristics that generate the dispositions, and Van Heerden & Smolenaars 

5 It is interesting to observe that, upon a dispositional interpretation of true scores, the stochas-
tic aspect of classical test theory may receive a new interpretation. For instance, the value of the 
observed score variance for a given subject (normally interpreted as an index of measurement 
precision) would in this case reflect the strength of the disposition. 
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(1989) interpret dispositions as promissory notes (i.e., they involve a promise that, 
if one looks into dispositional properties, one could discover more fundamental laws 
that govern dispositional behavior). 

The true score is not open to such an interpretation as long as the thought ex-
periment is retained. For it refers to what would happen in an impossible state of 
affairs, namely to the observed score distribution that Mr. Brown would generate 
in the brainwashing thought experiment. So, the thought experimental character 
of the true score makes it quite useless as an inference ticket in the common inter-
pretation of that term. A possible response to this problem, is to dispose of the 
thought experiment and to interpret true scores as propensities, without reference 
to limiting frequencies. I have already discussed this possibility in 2.2.1. Doing 
this, however, would preclude an interpretation of true score theory as a theory 
of measurement, for the only remaining connection to the theory of errors would 
disappear. In fact, classical test theory would become a statistical theory of dispo-
sitions; interpretations of observed score variance as 'random error', for example, 
would be out of the question, and the interpretation of the squared correlation be-
tween observed and true scores as 'reliability' would hardly make sense. Certainly, 
the founders of the theory did not intend classical test theory in this way, and its 
users do not interpret it so; in fact, it is likely that, interpreted as a statistical 
theory of dispositions for unique events, classical test theory would not appeal to 
those involved in psychological testing at all. 

2.3 Discussion 

Classical test theory was either one of the best ideas in 20th century psychology, or 
one of the worst mistakes. The theory is mathematically elegant and conceptually 
simple, and in terms of its acceptance by psychologists, it is a psychometric success 
story. However, as is typical of popular statistical procedures, classical test theory 
is prone to misinterpretation. One reason for this is the terminology used: If a 
competition for the misnomer of the century existed, the term 'true score' would be 
a serious contestant. The infelicitous use of the adjective 'true' invites the mistaken 
idea that the true score on a test must somehow be identical to the 'real', "valid", 
or 'construct' score. This chapter has hopefully proved the inadequacy of this view 
beyond reasonable doubt. 

The problems with the platonic true score interpretation were, however, seen to 
run deeper than a confound of validity and unreliability. It seems that the entire 
idea, that true scores are real entities, leads to a metaphysical explosion of reality. 
It was therefore argued that true scores are not to be granted a place in reality, 
but rather should be seen as a particular kind of score. And just as we do not say 
that every person has an IQ-score, but rather that every person would receive an 
IQ-score if tested, we have to refrain from saying that every person has a true score. 
What we can say is that every person would have an expected value, if he or she were 
repeatedly tested in a long run of testing occasions with intermediate brainwashing 
and time travel. The true score must thus be considered to be a dispositional 
concept, in particular as a disposition to generate specific long run frequencies. 
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The fact that not even such frequencies can be granted a place in reality, but must 
be considered in terms of a thought experiment, further degenerates the connection 
that the true score may bear to the real world. 

A philosophy of measurement that could accommodate for these problems is 
operationalism. The true score has some problems that are similar to those of op-
erationalism, and, at the same time, other problems can be resolved by introducing 
arguments that are similar to the operationalist defense. An operationalist inter-
pretation could also restore the identity of constructs and true scores; this time, 
however, not by upgrading true scores, but by degrading constructs. Such an in-
terpretation should therefore not be considered a platonic true score interpretation, 
but rather a nonplatonic construct interpretation. That is, if one is willing to give 
up the realist semantics of psychological constructs such as intelligence, extraver-
sion, or attitudes, and to conceive of them in an operationalist fashion (with a touch 
of fictionalism to accommodate for the thought experimental character of the true 
score), then the true score could be a candidate for representing these constructs in 
a measurement model. The fictionalist element, which must be introduced because 
the true score, as a disposition, generalizes over a domain of impossible replications, 
precludes the interpretation of the true score as an inference ticket (Ryle 1949), or a 
promissory note (Van Heerden & Smolenaars, 1989). It also deprives the concept of 
the possible realist semantics that may be introduced for dispositions (Rozeboom, 
1973), unless the entire idea that we are dealing with a theory of measurement is 
given up, by dismissing the thought experiment and disconnecting the theory from 
the theory of errors. I suspect that no classical test theorist will be willing to do this; 
classical test theory is intended, formulated, and used as a theory of measurement, 
and I do not expect classical test theorists to revert their self-image from 'expert 
in measurement theory' to 'expert in dispositional psychology'. However, retaining 
the idea that we are dealing with a theory of measurement requires abandoning a 
realist interpretation of the true score, and taking an operationalist perspective. 

Of course, since the true score is appropriately characterized as a product of 
the test theorists imagination, and therefore does not obtain a realist ontology, 
this is not a particularly pressing philosophical problem. At least, it is better 
than the kind of realism needed to localize the true score in the world. It is a 
pressing theoretical problem for psychology, however, because I do not think that 
many researchers in psychology are particularly interested in a true score, which 
specifies a disposition with respect to a set of impossible situations. So, once again 
we see the fundamental tension that Lord & Novick have introduced through their 
axiomatic treatment of test theory: The theory is constructed in such a way that 
it always works, but at the price of losing the natural interpretation of its central 
concepts. A psychologically meaningful interpretation of true scores and random 
error, as reflecting a stable characteristic and unsystematic variation respectively, 
is philosophically untenable. A philosophically acceptable interpretation of these 
concepts, as products of the imagination which refer to recurrent dispositions in a 
counterfactual state of affairs, is psychologically unattractive. Classical test theory 
systematically falls between these two stools. 

It is my understanding that few, if any, researchers in psychology conceive of 
psychological constructs in a way that would justify the use of classical test the-
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ory as an appropriate measurement model. Why, then, is the classical test theory 
model so immensely successful? Why is it that virtually every empirical study in 
psychology reports values of Cronbach's a as the main justification for test use? 
I am afraid that the reason for this is entirely pragmatic, and has been given in 
section 2.2.2: The common use of classical test theory does not involve testing the 
model assumptions. The lower bound strategy always returns a value for the inter-
nal consistency coefficient. In fact, this value can be obtained through a mindless 
mouse-click. Inserting the lower bound into formulae for disattenuating correlations 
between test scores, as advocated by Schmidt & Hunter (1999), will further allow 
one to boost validity coefficients to whatever level is desired. All this will come 
at no additional costs, for it does not require any of the tedious work involved in 
latent variable models, which moreover have a tendency to prove many of the com-
monly held interpretations of test scores illusory. Applying classical test theory is 
easy, and a commonly accepted escape route to avoid notorious problems in psycho-
logical testing, such as constructing unidimensional tests. The model is, however, 
so enormously detached from common interpretations of psychological constructs, 
that the statistics based on it appear to have very little relevance for psychological 
measurement. Coupled with the unfortunate misinterpretations of the true score 
as the construct score, of random error as irrelevant variation, and of reliability 
as some kind of fixed characteristic of tests, instead of as a population dependent 
property of scores, it would seem that large parts of the psychological community 
are involved in self-deception. Wishful thinking, however, is not a particularly con-
structive scientific procedure, and mystifying test theoretical concepts is certain 
to obstruct, rather than stimulate, progress in psychology. I therefore hope that 
the analysis reported here has added to the understanding and demystification of 
classical test theory concepts, and has made clear that much more is needed for an 
adequate treatment of psychological test scores. 



3. LATENT VARIABLES 

Once you have formed the noun 'abil-
ity' from the adjective 'able', you are 
in trouble. 
- B.F. Skinner, 1987 

3.1 Introduction 

In the previous chapter, I have argued that the classical test theory model is unsat-
isfying for a number of reasons. Most important is the fact that the attribute to be 
measured is not adequately represented in the model. The reason for this is that 
the true score is an operationalist concept, and can only represent a psychological 
attribute if this attribute is similarly defined in an operationalist fashion. In fact, 
unless one holds a strongly operationalist view of the measurement process, it is 
difficult to maintain even that classical test theory is a theory of measurement in 
the first place. 

A view of measurement that does represent the attribute explicitly in the model 
formulation can be based on latent variable theory. In latent variable models, one 
sets up a formal structure that relates test scores to the hypothesized attribute, 
deduces empirical implications of the model, and evaluates the adequacy of the 
model by examining the goodness of fit with respect to empirical data. Because the 
latent variable model has to be restricted to make empirical tests possible, a theo-
retical justification of the model structure is, in general, required. Latent variable 
theory thus goes beyond classical test theory in that it attempts to construct a hy-
pothesis about the data generating mechanism, in which the attribute is explicitly 
represented as a latent variable. 

Historically, the conceptual framework originates with the work of Spearman 
(1904), who developed factor analytic models for continuous variables in the con-
text of intelligence testing. In the twentieth century, the development of the latent 
variable paradigm has been spectacular. The factor analytic tradition continued 
with the work of Lawley (1943), Thurstone (1947) and Lawley & Maxwell (1963), 
and entered into the conceptual framework of confirmatory factor analysis (CFA) 
with Jöreskog (1971), Wiley (1973), and Sörbom (1974). In subsequent years, 
CFA became a very popular technique, largely because of the LISREL program by 
Jöreskog & Sörbom (1993). In a research program that developed mostly parallel 
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to the factor analytic tradition, the idea of latent variables analysis with continuous 
latent variables was applied to dichotomous observed variables by Guttman (1950), 
Lord (1952; 1980), Rasch (1960), Birnbaum (1968) and Mokken (1970). These mea-
surement models, primarily used in educational testing, came to be known as Item 
Response Theory (IRT) models. The IRT framework was extended to deal with 
polytomous observed variables by Samejima (1969), Bock (1972). and Thissen & 
Steinberg (1984). Meanwhile, in yet another parallel research program, methods 
were developed to deal with categorical latent variables. In this context, Lazarsfeld 
(1950). Lazarsfeld & Henry (1968), and Goodman (1974) developed latent struc-
ture analysis. Latent structure models may involve categorical observed variables, 
in which case we speak of latent class analysis, or metrical observed variables, giving 
rise to latent profile analysis (Bartholomew, 1987). After boundary-crossing inves-
tigations by McDonald (1982), Thissen & Steinberg (1986), Takane & De Leeuw 
(1987), and Goldstein & Wood (1989), Mellenbergh (1994) connected some of the 
parallel research programs by showing that most of the parametric measurement 
models could be formulated in a common framework. 

At present, there are various developments that emphasize this common frame-
work for latent variables analysis, cases in point being the work of Muthén & Muthén 
(1998), McDonald (1999), and Moustaki & Knott (2000). Different terms are used to 
indicate the general latent variable model. For example, Goldstein & Wood (1989) 
use the term Generalized Linear Item Response Model (GLIRM), while Mellenbergh 
(1994) speaks of Generalized Linear Item Response Theory (GLIRT), and Moustaki 
& Knott (2000) follow McCullagh & Nelder (1989) in using the term Generalized 
Linear Model (GLIM). I will adopt Mellenbergh's terminology and use the term 
GLIRT, because it emphasizes the connection with IRT, and, in doing so, the fact 
that the model contains at least one latent variable. Now, at the beginning of the 
twenty-first century, it would hardly be an overstatement to say that the GLIRT 
model, at least among psychometricians and methodologists, has come to be the re-
ceived view in the theory of psychological measurement - notwithstanding the fact 
that classical test theory is still the most commonly used theory in test analysis. 

The growing use of latent variables analysis in psychological research is inter-
esting from a philosophical point of view, exactly because latent variable theory, in 
contrast to classical test theory, is typically aimed at constructing an explanatory 
model to account for relations in the data. This means that explanations that make 
use of unobservable theoretical entities are increasingly entertained in psychology. 
As a consequence, the latent variable has come to play a substantial role in the 
explanatory structure of psychological theories. Now, concepts closely related to 
the latent variable have been discussed extensively. These concepts include the 
meaning of the arrows in diagrams of structural equation modeling (see. for exam-
ple. Sobel, 1994; Pearl. 1999: Edwards & Bagozzi. 2000), the status of true scores 
(Klein & Cleary, 1967: Lord & Novick, 1968: Lumsden. 1976), definitions of latent 
variables (Bentler. 1982: Bollen, 2002). specific instances of latent variables such as 
the Big Five Factors in personality research (Lamiell, 1987; Pervin, 1994), and the 
trait approach in general (Mischel, 1968; 1973). Also, the status of unobservable 
entities is one of the major recurrent themes in the philosophy of science of the 
past century, where battles were fought over the conceptual status of unobservable 
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entities such as electrons (see Cartwright. 1983. Hacking, 1983, Van Fraassen, 1980. 
and Devitt, 1991. for some contrasting views). However, the theoretical status of 
the latent variable as it appears in models for psychological measurement has not 
received a thorough and general analysis as yet. 

Questions that are relevant, but seldomly addressed in detail, are similar to 
the questions addressed in the previous chapter. For instance, should we assume 
that the latent variable signifies a real entity, or conceive of it as a useful fiction, 
constructed by the human mind? Should we say that we measure a latent vari-
able in the sense that it underlies and determines our observations, or is it more 
appropriately considered to be constructed out of the observed scores? What ex-
actly constitutes the relation between latent variables and observed scores? Is this 
relation of a causal nature? If so, in what sense? And. most importantly, is latent 
variable theory neutral with respect to these issues? In the course of discussing 
these questions, we will see that latent variable theory is not philosophically neu-
tral; specifically, it will be argued that, without a realist interpretation of latent 
variables, the use of latent variables analysis is hard to justify. At the same time, 
however, the relation between latent variables and individual processes proves to 
be too weak to defend causal interpretations of latent variables at the level of the 
individual. This observation leads to a distinction between several kinds of latent 
variables, based on their relations with individual processes. 

3.2 Three perspectives on latent variables 

The syntax, semantics, and ontology of latent variable models are substantially 
different from those used in classical test theory. Syntactically, the model relates 
expected item responses to a latent variable by specifying an appropriate item re-
sponse function. This function formulates a regression of the item score on a latent 
variable. Semantically, the expected item response may be interpreted in two ways: 
As a true score, in which case we follow a stochastic subject interpretation, or as 
a subpopulation mean, in which case we follow a repeated sampling interpretation. 
From an ontological viewpoint, the model is most naturally interpreted in a realist 
fashion. This probes the question what constitutes the nature of the relation be-
tween latent variables and observed scores. It is argued that this relation can be 
constructed as a causal one, but only when the latent variable is interpreted as the 
cause of differences between subpopulations. 

3.2.1 The formal stance 
Syntax In modern test theory models, such as the various IRT-models or confir-
matory factor models, the relation between the latent variable and the observed 
scores is mathematically explicit. In GLIRT, the form for this relation is a general-
ized regression function of the observed scores on the latent variable, although this 
regression may differ in form. The model relates an observed item response variable 
U to a latent variable 9 via a function of the form 

g{£(Uij)]=pj+aj61, (3.1) 
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where g is a link function, £{Uij) is interpreted either as the expected item response 
of subject i on item j , or as the expectation of the item response in a population of 
subjects with position 0, on the latent variable, and a,- and 0j are an item-specific 
regression weight and intercept term, respectively. 

Some specific forms of the model will be relevant in the following chapters. First, 
in item response theory for dichotomous items and continuous latent variables, the 
link function is often taken to be the logit transformation (the natural logarithm of 
the odds ratio). In this case we have a model of the form 

In £(Uij) 
i-£(uij) 

Pj+a^d,. (3.2) 

The intercept term f3 is then usually interpreted as item difficulty, because it refers 
to the location of the item response function on the 0-scale, and a is interpreted as 
item discrimination, because it refers to the slope of the item response function. If all 
item discrimination parameters are assumed equal, then we have an additive model, 
because item and subject effects are independent (i.e., they do not interact, where 
the interpretation of 'interact' is the same as in analysis of variance). This form of 
the model is known as the Rasch model (Rasch. 1960). Allowing the discrimination 
parameters to vary gives the less restrictive two-parameter logistic model introduced 
by Birnbaum (1968). This model can be viewed as incorporating a person x item 
interaction term. 

If item responses are continuous, and the function g is taken to be the identity 
link, we arrive at Jöreskog's (1971) congeneric model, better known as the common 
factor model: 

£{Uij)=^j+aj6i. (3.3) 

Finally, if the latent variable is categorical, we can formulate the latent class model 
(if item responses are dichotomous) or the latent profile model (if item responses 
are continuous) by dummy coding the latent variable. Various other models can 
be arrived at by introducing appropriate restrictions and transformations (Mellen-
bergh, 1994), but the models discussed above are the most important ones for the 
present discussion. 

It is important to realize that, despite the intricate mathematics that sometimes 
accompanies the literature on latent variable theory, the basic form of the model 
is very simple. For instance, in a factor model for general intelligence, the model 
says that an increase of n units in the latent variable leads to an increase of n times 
the factor loading in the expected value of a given item. So. formally, the model is 
just a regression model, but the independent variable is latent rather than manifest. 
The ingenious idea in latent variable modeling is that, while the model cannot be 
tested directly for any given item because the independent variable is latent, it can 
be tested indirectly through its implications for the joint probability distribution 
of the item responses for a number of items. Specifically, in the standard latent 
variable model the item responses will be independent, conditional on the latent 
variable, which means that the items satisfy local independence. 

Now there are two things we can do on the basis of our set of assumptions. First, 
we can determine how observed scores would behave if they were generated under 
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our model (this applies not only to mathematical derivations but also to simulation 
studies). Second, we can develop plausible procedures to estimate parameters in 
the model on the basis of manifest scores, given the assumption that these scores 
were generated by our model. It is sometimes implicitly suggested that the formal 
derivations tell us something about reality, but this is not the case. Each supposition 
'inside' the formal system is a tautology, and tautologies in themselves cannot tell 
us anything about the world. So this is all in the syntactic domain, that is, it has no 
meaning outside the formal theory. Let us denote the latent variable as it appears 
in this formal stance (that is, the concept indicated by 9, in the IRT literature, or 
by £, in the SEM literature) as the formal latent variable. 

Semantics The syntax of latent variable theory specifies a regression of the ob-
served scores on the latent variable. What are the semantics associated with this 
relation? In other words: how do we interpret this regression? 

Of course, as is the case for classical test theory, the syntax of latent variables 
analysis is taken from statistics, and so are its semantics. And, like classical test 
theory, latent variable theory needs an interpretation for the use of the expectation 
operator in the model formulation. Because it is not at all clear why a response to 
an item, say, the item '2 + 2 = ..', should be considered a random variable, it is 
important to interpret the item response in such a way as to justify this approach. 
The problem faced here is similar to that faced by the classical test theorist in 
the definition of the true score, but the latent variable theorist has a considerably 
greater freedom of interpretation. 

The first interpretation, known as the stochastic subject interpretation, uses 
the same line of reasoning as classical test theory, and views the expectation as 
applying to the individual subject. This implies a series of hypotheticals of the 
form 'given that subject i has value 9% on the latent variable, i's expected item 
response equals £{Uij\9i)\ where £{Uij\9i) is the expectation of the item response 
as given by the item response function. Supposing that the imaginary subject John 
takes an intelligence test item, this would become something like 'given that John's 
level of intelligence is two standard deviations below the population mean, he has 
a probability of .70 to answer the item '2 + 2 = ..' correctly'. For subjects with 
different positions on the latent variable, different parameters for the probability 
distribution in question are specified. So, for John's brighter sister Jane we could 
get 'Given that Jane's level of intelligence is one standard deviation above the pop-
ulation mean, Jane has a probability of .99 to answer the item correctly'. The item 
response function (i.e., the regression of the item response on the latent variable) 
then specifies how the probability of a correct answer changes with the position on 
the latent variable. The stochastic subject interpretation requires a thought exper-
iment similar to that used in classical test theory, and in this interpretation the 
expected value of subject i on item j , £(Uij), can be considered to be identical to 
subject i's true score on item j if the latent variable model is true. 

In contrast to classical test theory, however, the model can also be formulated 
without the brainwashing thought experiment. This requires conceptualizing the 
model in terms of a repeated sampling interpretation, which is more common in the 
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literature on factor analysis (see. for example. Meredith, 1993) than in the literature 
on IRT. This is a between-subjects formulation of latent variables analysis. It 
focuses on characteristics of populations, instead of on characteristics of individual 
subjects. The probability distribution of the item responses, conditional on the 
latent variable, is conceived of as a probability distribution that arises from repeated 
sampling from a population of subjects with the same position on the latent variable. 
In particular, parameters of these population distributions are related to the latent 
variable in question. 

Thus, the repeated sampling interpretation is in terms of a series of sentences 
of the form •the population of subjects with position 0* on the latent variable fol-
lows distribution ƒ over the possible item responses Uij\ the expected item response 
£(Uij\6i) is the expectation of the item responses in the subpopulation of subjects 
with position 9t on the latent variable'. Now, the probability distribution over the 
item responses, that pertains to a specific position 0< on the latent variable, arises 
from repeated sampling from the population of subjects taking this position; the 
expectation may then be interpreted as a subpopulation mean. In this interpre-
tation, the probability that John answers the item correctly does not play a role. 
Rather, the focus is on the probability of drawing a person that answers the item 
correctly from a population of people with John's level of intelligence, and this 
probability is .70. In other words, 70% of the population of people with John's 
level of intelligence (i.e., a level of intelligence that is two standard deviations be-
low the population mean) will answer the item correctly; and 30% of those people 
will answer the item incorrectly. There is no random variation located within the 
person. 

The difference between the stochastic subject and repeated sampling interpre-
tations is substantial, for it concerns the very subject of the theory. The two 
interpretations entertain different conceptions of what it is we are modeling: in the 
stochastic subject formulation, we are modeling characteristics of individuals, while 
in the repeated sampling interpretation, we are modeling subpopulation means. 
However, if we follow the stochastic subject interpretation and assume that ev-
erybody with John's level of intelligence has probability .70 of answering the item 
correctly, then the expected proportion of subjects with this level of intelligence that 
will answer the item correctly (repeated sampling interpretation) is also .70. The 
assumption that the measurement model has the same form within and between 
subjects has been identified as the local homogeneity assumption (Ellis & Van den 
Wollenberg, 1993). Via this assumption, the stochastic subject formulation suggests 
a link between characteristics of the individual and between-subjects variables. El-
lis & Van den Wollenberg (1993) have shown, however, that the local homogeneity 
assumption is an independent assumption that follows in no way from the other 
assumptions of the latent variable model. Also, the assumption is not testable, 
because it specifies what the probability of an item response would be in a series 
of independent replications with intermediate brainwashing in the Lord & Novick 
(1968: p. 29) sense. Basically, this renders the connection between within-subject 
processes and between subjects variables speculative (in the best case). In fact, it 
will be argued later on that the connection is little more than an article of faith: the 
standard measurement model has virtually nothing to say about characteristics of 
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individuals, and even less about item response processes. This will prove crucially 
important for the ontology of latent variables, to be discussed later in this chapter. 

3.2.2 The empirical stance 
Because a latent variable model has testable consequences at the level of the joint 
distribution of the item responses, it is possible to test the adequacy of the model 
against the data. In contrast to classical test theory applications, such model tests 
are commonly carried out in latent variables analysis. Like many testing proce-
dures throughout science, however, such model fit tests suffer from the problem 
of underdetermination of theory by data. This means that many data generating 
mechanisms can produce the same structure in the data as the hypothesized model. 
So, if observed variables behave in the right way, a latent variable model will fit, 
but this does not imply that the model is correct. 

The issue that is called underdetermination in the philosophy of science is called 
statistical equivalence in the modeling literature (see, for example, Hershberger, 
1994). In this context it has, for instance, been shown by Bartholomew (1987; see 
also Molenaar & Von Eye, 1994) that a latent profile model with p latent profiles 
generates the same first and second order moments (means, variances, and covari-
ances) for the observed data as a factor model withp— 1 continuous latent variables. 
These models are conceptually different: the factor model posits continuous latent 
variables (i.e., it specifies that subjects vary in degree, but not in kind), while the 
latent profile model posits categorical latent variables at the nominal level (i.e., it 
specifies that subjects vary in kind, but not in degree). This suggests, for example, 
that the five factor model in the personality literature corresponds to a typology 
with six types. Moreover, on the basis of the covariances used in factor analysis, the 
Big Five Factors would be indistinguishable from the Big Six Types. The fact that 
theoretically distinct models are practically equivalent in an empirical sense urges 
a strong distinction between the formal and empirical structure of latent variables 
analysis. 

This point is important because it emphasizes that the attachment of theoretical 
content to a latent variable requires an inferential step, and is not in any way 'given' 
in empirical data, just as it is not 'given' in the mathematical formulation of a model. 
The latent variable as it is viewed from the empirical stance, i.e., the empirical entity 
that is generally presented as an estimate of the latent variable, will be denoted 
here as the operational latent variable. Note that there is nothing latent about 
the operational latent variable. It is simply a function of the observed variables, 
usually a weighted sumscore (that the weights are determined via the theory of the 
formal latent variable does not make a difference in this respect). Note also that 
such a weighted sumscore will always be obtained, and will in general be judged 
interpretable if the corresponding model fits the data adequately. The foregoing 
discussion shows, however, that the fit of a model does not entail the existence of a 
latent variable. A nice example in this context is given by Wood (1978), who showed 
that letting people toss a number of coins (interpreting the outcome of the tosses as 
item responses) yields an item response pattern that is in perfect agreement with 
the Rasch model. A more general treatment is given in Suppes and Zanotti (1981) 
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who show that, for three dichotomous observed variables, a latent variable can be 
found if and only if the observed scores have a joint distribution. The developments 
in Bartholomew (1987) and Molenaar & Von Eye (1994) further show that model 
fit does not entail the form (e.g., categorical or continuous) of the latent variable, 
even if its existence is assumed a priori. 

The above discussion shows that the connection between the formal and oper-
ational latent variable is not self-evident. In order to make that connection, we 
need an interpretation of the use of formal theory in empirical applications. This, 
in turn, requires an ontology for the latent variable. 

3.2.3 The ontological stance 

The formal latent variable is a mathematical entity. It figures in mathematical 
formulae and statistical theories. Latent variable theory tells us how parameters 
that relate the latent variable to the data could be estimated, if the data were 
generated under the model in question. The 'if' in the preceding sentence is very 
important. It points the way to the kind of ontology we have to invoke. The 
assumption, that it was this particular model that generated the data, must precede 
the estimation process. In other words, if we consider the weighted sumscore as an 
estimate of the position of a given subject on a latent variable, we do so under 
the model specified. Now this weighted sumscore is not an estimate of the formal 
latent variable: we do not use an IQ-score to estimate the general concept usually 
indicated by the Greek letter 9. but to estimate intelligence. Thus, we use the 
formal side of the model to acquire knowledge about some part of the world; then 
it follows that we estimate something which is also in that part of the world. What 
is that something? 

It will be clear that the answer to this question must consider the ontology of 
the latent variable, which is, in quite a crucial way, connected to its theoretical 
status. An ontological view is needed to connect the operational latent variable to 
its formal counterpart, but at first sight there seems to be a considerable freedom 
of choice regarding this ontology. I will argue that this is not the case. 

There are basically three positions one can take with respect to this issue. The 
first position adheres to a form of entity realism, in that it ascribes an ontological 
status to the latent variable in the sense that it is assumed to exist independent 
of measurement. The second position could be coined 'constructivist' in that it 
regards the latent variable as a construction of the human mind, which need not 
be ascribed existence independent of measurement. The third position maintains 
that the latent variable is nothing more than the empirical content it carries - a 
'numerical trick' used to simplify our observations: This position holds that there is 
nothing beyond the operational latent variable and could be called operationalist. 
Strictly taken, operationalism is a kind of constructivism, but the latter term is 
intended to cover a broader class of views (for example, the more sophisticated 
empiricist view of Van Fraassen, 1980). In fact, only the first of these views can be 
consistently attached to the formal content of latent variable theory. 
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Operationalism and the numerical trick 

It is sometimes heard that the latent variable is nothing but the result of a numerical 
trick to simplify our observations. In this view, the latent variable is a (possibly 
weighted) sumscore and nothing more. There are several objections that can be 
raised against this view. A simple way to see that it is deficient is to take any 
standard textbook on latent variable theory and to replace the term 'latent variable' 
by 'weighted sumscore'. This will immediately render the text incomprehensible. 
It is. for example, absurd to assert that there is a sumscore underlying the item 
responses. The obvious response to this argument is that we should not take such 
texts literally; or, worse, that we should maintain an operationalist point of view. 
Such a move, however, raises more serious objections. 

If the latent variable is to be conceived of in an operationalist sense, then it 
follows that there is a distinct latent variable for every single test we construct. 
This is consistent with the operationalist view of measurement (Bridgman, 1927) 
but not with latent variable theory. To see this, consider a simple test consisting 
of three items j , k, and I. Upon the operationalist view, the latent variable that 
accounts for the item responses on the subtest consisting of items j and k is dif-
ferent from the latent variable that accounts for the item response pattern on the 
subtest consisting of items k and I. So, the test consisting of items j , k, and / does 
not measure the same latent variable and therefore cannot be unidimensional. In 
fact, upon the operationalist view, it is impossible even to formulate the require-
ment of unidimensionality; consequently, an operationalist would have a very hard 
time making sense of procedures commonly used in latent variable theory, such as 
adaptive testing, where different tests are administered to different subjects with 
the objective to measure a single latent variable. Note the striking difference with 
classical test theory, which suffers from exactly the opposite problem, because it 
cannot say what it means for two tests to measure the same attribute. Where clas-
sical test theory and operationalism go hand in hand, operationalism and latent 
variable theory are fundamentally incompatible. 

In a line of reasoning that is closely related to operationalism, it can be argued 
that the use of latent variable theory is merely instrumental, a means to an end. 
This would yield an instrumentalist point of view (Toulmin, 1953) which is akin to 
operationalism. In this view, the latent variable is a pragmatic concept, a 'tool', 
that is merely useful for its purpose (the purpose being prediction or data reduction, 
for example). No doubt, methods such as exploratory factor analysis may be used 
as data reduction techniques and, although principal components analysis seems 
more suited as a descriptive technique, are often used in this spirit. Also, such 
models can be used for prediction, although it has been forcefully argued by several 
authors (e.g., Maxwell, 1962) that the instrumentalist view leaves us entirely in 
the dark when confronted with the question why our predictive machinery (i.e., the 
model) works. We do not have to address such issues in detail, however, because the 
instrumentalist view simply fails to provide us with a structural connection between 
the formal and operational latent variable. In fact, the instrumental interpretation 
begs the question. For suppose that we interpret latent variable models as data 
reduction devices. Why, then, are the factor loadings determined via formal latent 
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variable theory in the first place? Obviously, upon this view, no weighting of the 
sumscore can be structurally defended over any other. Any defense of this position 
must therefore be as ad hoc as the use of latent variables analysis for data reduction 
itself1. 

Realism and constructivism 

So. if there is more to the latent variable than just a calculation, used to simplify 
our observations, what is it? We are left with a choice between realism, maintaining 
that latent variable theory should be taken literally - the latent variable signifying 
a real entity - and constructivism, stating that it is a fiction, constructed by the 
human mind. 

The difference between realism and constructivism resides mainly in the con-
structivist's denial of one or more of the realist claims. Realism exists in a number 
of forms, but a realist will in general maintain one or several of the following theses 
(Hacking, 1983; Devitt, 1991). First, there is realism about theories: the core thesis 
of this view is that theories are either true or false. Second, one can be a realist 
about the entities that figure in scientific theories: the core thesis of this view is 
that at least some theoretical entities exist. Third, realism is typically associated 
with causality: theoretical entities are causally responsible for observed phenomena. 
These three ingredients of realism offer a simple explanation for the success of sci-
ence: we learn about entities in the world through a causal interaction with them, 
the effect of this being that our theories get closer to the truth. The constructivist, 
however, typically denies both realism about theories and about entities. The ques-
tion is whether a realist commitment is implied in latent variables analysis. It will 
be argued that this is the case: latent variable theory maintains both theses in the 
set of assumptions underlying the theory. 

Entity realism is weaker than theory realism. For example, one may be a realist 
about electrons, in which case one would maintain that the theoretical entities we 
call 'electrons' correspond to particles in reality. This does not imply a full-blown 
realism about theories: for example, one may view theories about electrons as 
abstractions, describing the behavior of such particles in idealized terms (so that 
these theories are, literally taken, false). Cartwright (1983) takes such a position. 
Theory realism without entity realism is much harder to defend, for a true theory 
that refers to non-existent entities is difficult to conceive of. I will first discuss entity 
realism, before turning to the subject of theory realism. 

Entity realism 

Latent variable theory adheres to entity realism, because this form of realism is 
needed to motivate the choice of model in psychological measurement. The model 
that is customary in psychological measurement is the model in the left panel of 

1 This should not be read as a value judgement. Data reduction techniques are very important, 
especially in the exploratory phases of research. The fact that these techniques are important, 
however, does not entail that they are not ad hoc. 
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Figure 3.1. (The symbolic language is borrowed from the structural equation mod-
eling literature, but the structure of the model generalizes to IRT and other latent 
variable models.) The model specifies that the pattern of covariation between the 
indicators can be fully explained by a regression of the indicators on the latent 
variable, which implies that the indicators are independent after conditioning on 
the latent variable (this is the assumption of local independence). An example of 
the model in the left panel of the figure would be a measurement model for, say, 
dominance, where the indicators are item responses on items like 'I would like a job 
where I have power over others', 'I would make a good military leader', and 'I try 
to control others'. Such a model is called a reflective model (Edwards & Bagozzi, 
2000), and it is the standard latent variable model in psychology - employed in 
prominent models such as the general intelligence and Big Five models. An al-
ternative model, that is more customary in sociological and economical modeling, 
is the model in the right panel of Figure 3.1. In this model, called a formative 
model, the latent variable is regressed on its indicators. An example of a formative 
model is the measurement model for social economic status (SES). In such a model 
a researcher would, for example, record the variables income, educational level, and 
neighborhood as indicators of SES. 

The models in Figure 3.1 are psychometrically and conceptually different (Bollen 
& Lennox, 1991). There is, however, no a priori reason why, in psychological mea-
surement, one should prefer one type of measurement model to the other2. The 
measurement models that psychologists employ are typically of the reflective kind. 
Why is this? 

The obvious answer is that the choice of model depends on the ontology of the 
latent variables it invokes. A realist point of view motivates the reflective model, 
because the response on the questionnaire items is thought to vary as a function of 
the latent variable. In this case, variation in the latent variable precedes variation 
in the indicators. In ordinary language: dominant people will be more inclined to 
answer the questions affirmatively than submissive people. In this interpretation, 
dominance comes first and 'leads to' the item responses. This position implies a 
regression of the indicators on the latent variable, and thus motivates the choice 
of model. In the SES example, however, the relationship between indicators and 
latent variable is reversed. Variation in the indicators now precedes variation in the 
latent variable: SES changes as a result of a raise in salary, and not the other way 
around. 

Latent variables of the formative kind are not conceptualized as determining 
our measurements, but as a summary of these measurements. These measurements 
may very well be thought to be determined by a number of underlying latent vari-
ables (which would give rise to the spurious model with multiple common causes 
of Edwards & Bagozzi, 2000), but we are not forced in any way to make such an 
assumption. Now, if we wanted to know how to weight the relative importance of 
each of the measurements comprising SES in predicting, say, health, we could use 
a formative model like that in the right panel of Figure 3.1. In such a model, we 

2 It is in itself an interesting (and neglected) question where to draw the line separating these 
classes of models at a content-level. For example, which of the formal models should be applied 
to the relation between diagnostic criteria and mental disorders in the DSM? 
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could also test whether SES acts as a single variable in predicting health. In fact, 
this predictive value would be the main motivation for conceptualizing SES as a 
single latent variable. However, nowhere in this development have we been forced 
to admit that SES exists independent of our measurements. 

F i g u r e 3 .1 . Two models for measurement. The figure in the left panel is the reflective 
measurement model. The X's are observed variables, f is the latent variable, A's are factor 
loadings and the <5's are error terms. The right panel shows the formative model. The la-
tent variable is denoted 77, the 7's are the weights of the indicators, and £ is a residual term. 

c. 

The formative model thus does not necessarily require a realist interpretat ion of the 
latent variable tha t it invokes. In fact, if a realist interpretation were to be given, it 
would be natural to conceptualize this as a spurious model with multiple common 
causes in the sense of Edwards and Bagozzi (2000). This would again introduce 
a reflective part in the model, which would correspond to that part of the model 
tha t has a realist interpretation. Thus, the realist interpretation of a latent variable 
implies a reflective model, whereas constructivist, operationalist, or instrumentalist 
interpretations are more compatible with a formative model. 

In conclusion, the s tandard model in psychological measurement is a reflective 
model tha t specifies tha t the latent variable is more fundamental than the i tem 
responses. This implies entity realism about the latent variable, at least in the 
hypothetical side of the argument (the assumptions of the model). Maybe more 
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important than this is the fact that psychologists use the model in this spirit. In 
this context, Hacking's (1983) remark that "the final arbitrator in philosophy is 
not how we think but what we do" (p. 31) is relevant: the choice for the reflec-
tive measurement model in psychology expresses realism with respect to the latent 
variable. 

Theory realism 

Theory realism is different from entity realism in that it concerns the status of the 
theory, over and above the status of the entities that figure in the theory. It is 
therefore a stronger philosophical position. The realist interpretation of theories 
is naturally tied to a correspondence view of truth (O'Connor, 1975). This theory 
constructs truth as a 'match' between the state of affairs as posed by the theory and 
the state of affairs in reality, and is the theory generally endorsed by realists (Devitt, 
1991). The reason why such a view is connected to realism is that, in order to have a 
match between theoretical relations and relations in reality, these relations in reality 
have to exist quite independent of what we say about them. For the constructivist, 
of course, this option is not open. Therefore, the constructivist will either deny the 
correspondence theory of truth and claim that truth is coherence between sentences 
(this is the so-called coherence theory of truth), or deny the relevance of the notion 
of truth altogether, for example by posing that not truth, but empirical adequacy 
(consistency of observations with predictions) is to be taken as the central aim of 
science (Van Fraassen, 1980). 

The formal side of latent variable theory, of course, does not claim correspon-
dence truth; it is a system of tautologies and has no empirical content. The question, 
however, is whether a correspondence type of assumption is formulated in the appli-
cation of latent variable theory. There are three points in the application where this 
may occur. First, in the evaluation of the position of a subject on the latent vari-
able; second, in the estimation of parameters; and third, in conditional reasoning 
based on the assumption that a model is true. 

In the evaluation of the position of a subject on the latent variable, correspon-
dence truth sentences are natural. The simple reason for this is that the formal 
theory implies that one could be wrong about the position of a given subject on 
the latent variable, which is only possible upon the assumption that there is a true 
position. To see this, consider the following. Suppose you have administered an 
intelligence test and you successfully fit a unidimensional latent variable model to 
the data. Suppose that the single latent variable in the model represents general 
intelligence. Now you determine the position on the latent variable for two subjects, 
say John and Jane Doe. You find that the weighted sumscore (i.e. the operational 
latent variable) is higher for John than for Jane, and you tentatively conclude that 
John has a higher position on the trait in question than Jane (i.e., you conclude that 
John is more intelligent). Now could it be that you have made a mistake, in that 
John actually has a lower score on the trait than Jane? The formal theory certainly 
implies that this is possible (in fact, this is what much of the theory is about; the 
theory will even be able to specify the probability of such a mistake, given the po-
sitions of John and Jane on the latent variable), so that the answer to this question 
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must be affirmative. This forces commitment to a realist position because there 
must be something to be wrong about. That is, there must be something like a true 
(relative) position of the subjects on the latent trait in order for your assessment 
to be false. You can, as a matter of fact, never be wrong about a position on the 
latent variable if there is no true position on that variable. Messick (1989) concisely 
expressed this point when he wrote that "one must be an ontological realist in order 
to be an epistemological fallibilist" (p.26). 

This argument is related to the second point in the application where we find 
a realist commitment, namely in the estimation of parameters. Here, we find es-
sentially the same situation, but in a more general sense. Estimation is a realist 
concept: roughly speaking, one could say that the idea of estimation is only mean-
ingful if there is something to be estimated. Again, this requires the existence of a 
true value: In a seriously constructivist view of latent variable analysis, the term 
'parameter estimation' should be replaced by the term 'parameter determination'. 
For it is impossible to be wrong about something if it is not possible to be right 
about it. And estimation theory is largely concerned with being wrong: it is a 
theory about the errors one makes in the estimation process. At this point, one 
may object here that this is only a problem within a frequentist framework, be-
cause the idea of a true parameter value is typically associated with frequentism 
(Fisher. 1925: Hacking, 1965: Neyman & Pearson, 1967). It may further be argued 
that using Bayesian statistics (Novick & Jackson, 1974; Lee, 1997) could evade the 
problem. Within a Bayesian framework, however, the realist commitment becomes 
even more articulated. A Bayesian conception of parameter estimation requires 
one to specify a prior probability distribution over a set of parameter values. This 
probability distribution reflects one's degree of belief over that set of parameter 
values (De Finetti, 1974). Because it is a probability distribution, however, the 
total probability over the set of parameter values must be equal to one. This means 
that, in specifying a prior, one explicitly acknowledges that the probability (i.e., 
one's degree of belief) that the parameter actually has a value in the particular set 
is equal to one. In other words, one states that one is certain about that. The 
statement that one is certain that the parameter has a value in the set implies that 
one can be wrong about that value. And now we are back in the original situation: 
it is very difficult to be wrong about something if one cannot be right about it. In 
parameter estimation, this requires the existence of a true value. 

The third point in the application of latent variables analysis where we encounter 
correspondence truth is in conditionals that are based on the assumption that a 
model is true. In the evaluation of model fit, statistical formulations use the term 
'true model'; for example, the Rvalue resulting from a likelihood ratio difference 
test between two nested models with a differing number of parameters is interpreted 
as the probability of finding this (or a more extreme) value for the corresponding 
chi-square, assuming that the most restricted model (i.e., the model that uses less 
parameters) is true. Psychometricians are, of course, aware of the fact that this 
is a very stringent condition for psychological measurement models to fulfill. So, 
in discussions on this topic, one often hears that there is no such thing as a true 
model (Cudeck k Browne. 1983; Browne & Cudeck, 1992). For example, McDonald 
& Marsh (1990) state that ". . . i t is commonly recognized, although perhaps not 
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explicitly stated, that in real applications no restrictive model fits the population, 
and all fitted restrictive models are approximations and not hypotheses that are 
possibly true" (p. 247). It would seem as if such a supposition, which is in itself 
not unreasonable, expresses a move away from realism. This is not necessarily 
the case. The supposition that there is no true model actually leaves two options: 
either all models are false or truth is not relevant at all. The realist, who adheres 
to a correspondence view of truth, must take the first option. The constructivist 
will take the second, and replace the requirement of truth with one of empirical 
adequacy. 

If the first option is taken, the natural question to ask is: in what sense is the 
model false? Is it false, for example, because it assumes that the latent variable 
follows a normal distribution while this is not the case? So interpreted, we are still 
realists: there is a true model, but it is a different model from the one we specified, 
i.e., one in which the latent variable is not normally distributed. The fact that the 
model is false is, in this sense, contingent upon the state of affairs in reality. The 
model is false, but not necessarily false (i.e., it might be correct in some cases, but 
it is false in the present application). One could, upon this view, reformulate the 
statement that there is no such thing as a true model as the statement that all 
models are misspecified. That this interpretation of the sentence 'all models are 
false' is not contrary to, but in fact parasitic on realism, can be seen from the fact 
that the whole notion of misspecification requires the existence of a true model: For 
how can we misspecify if there is no true model? Now, we may say that we judge the 
(misspecified) model close enough to reality to warrant our estimation procedures. 
We then interpret the model as 'approximately true'. So, upon this interpretation, 
we are firmly in the realist camp, even though we acknowledge that we have not 
succeeded in formulating the true model. This is as far as a realist could go in the 
acknowledgement that our models are usually wrong. Popper (1963) was a realist 
who held such a view concerning theories. 

The constructivist must take the second option and move away from the truth 
concept. The constructivist will argue that we should not interpret the statement 
that the model is true literally, but weaken the requirement to one of empirical 
adequacy. The whole concept of truth is thus judged irrelevant. The assumption 
that the model is true could then be restated as the assumption that the model fits 
the observable item response patterns perfectly at the population level. This renders 
the statistical assumption that a model is true (now interpreted as 'empirically 
adequate') meaningful, because it allows for disturbances in the observed fit due to 
random sampling, without assuming a realist view of truth. However, so interpreted, 
underdetermination rears up its ugly head. 

For example, take a simple case of statistically equivalent covariance structure 
models such as the ones graphically represented in Figure 3.2. (taken from Hersh-
berger, 1994). These models are empirically equivalent. This means that, if one of 
them fits the data, the other will fit the data equally well. If the assumption that 
model A is true is restated as the assumption that it is empirically adequate (i.e., 
it fits the item responses perfectly at the population level), the assumption that 
model A is true is fully equivalent to the assumption that model B is true. 
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F igu re 3.2. Two equivalent models. The SEM-models in the figure predict the same 
variance-covariance matrix and are thus empirically equivalent. X'a indicate observed 
variables, £'s latent variables, A's are factor loadings, 5's error terms, and cf> is the corre-
lation between latent variables. 
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Now try to reconstruct the estimation procedure. The estimation of the correlation 
between the latent variables £i and £2 takes place under the assumption that model 
B is t rue. Under the empirical adequacy interpretation, however, this assumption 
is equivalent to the assumption tha t model A is t rue, for the adjective ' t rue ' as it is 
used in statistical theory now merely refers t o empirical adequacy at the population 
level. This implies tha t the assumption tha t model B is t rue may be replaced by 
the assumption tha t model A is true, for these assumptions are the same. However, 
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this would mean that the correlation between the latent variables £1 and £2 c a n be 
estimated under the assumption that model A is true. In model A, however, there 
is only one latent variable. It follows that, upon the empirical adequacy view, the 
correlation between two latent variables can be estimated under the assumption 
that there is only one latent variable underlying the measurements. In my view, 
this is not particularly enlightening. But it must be said that the situation need 
not necessarily bother the constructivist, since the constructivist did not entertain 
a realist interpretation of these latent variables in the first place. However, it would 
take some ingenious arguments to defend this interpretation. 

In sum, the evaluation of the position of a subject on the latent variable, the 
process of estimating parameters, and the conditional reasoning based on the as-
sumption that a model is true, are characterized by realist commitments. It is 
difficult to interpret these procedures without an appeal to some sort of correspon-
dence truth. This requires a substantial degree of theory realism. However, what I 
have shown is only that the natural interpretation of what we are doing in latent 
variables analysis is a realist one; not that it is the only interpretation. It may be 
that the constructivist could make sense of these procedures without recourse to 
truth. For now, however, I leave this task to the constructivist, and contend that 
theory realism is required to make sense of latent variables analysis. 

Causality 

The connection between the formal and the operational latent variable requires a 
realist ontology. The question then becomes what constitutes the relation between 
the latent variable and its indicators. Note that this question is not pressing for 
the operationalist, who argues that the latent variable does not signify anything 
beyond the data, which implies that the relation between the latent variable and 
its indicators is purely logical. Nor need it bother the constructivist, who argues 
that we construct this relation ourselves; it is not an actual but a mental relation, 
revealing the structure of our theories rather than a structure in reality. The realist 
will have to come up with something different, for the realist cannot maintain either 
of these interpretations. 

The natural candidate, of course, is causality. That a causal interpretation 
may be formulated for the relation between latent variables and their indicators 
has been argued by several authors (e.g., Pearl, 1999, 2000; Edwards & Bagozzi, 
2000; Glymour, 2001), and I will not repeat these arguments. The structure of 
the causal relation is known as a common cause relation (the latent variable is the 
common cause of its indicators) and has been formulated by Reichenbach (1956). 
Here, I will concentrate on the form of the relation in a standard measurement 
model. Specifically. I will argue that a causal connection can be defended in a 
between-subjects sense, but not in a within-subject sense. 

For this purpose, we must distinguish between two types of causal statements 
that one can make about latent variable models. First, one can say that popula-
tion differences in position on the latent variable cause population differences in 
the expectation of the item responses. In accordance with the repeated sampling 
interpretation, this interpretation posits no stochastic aspects within persons: The 
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expectation of the item response is defined purely in terms of repeated sampling 
from a population of subjects with a particular position on the latent variable. Sec-
ond, one can say that a particular subject's position on the latent variable causes his 
or her item response probabilities. This interpretation corresponds to the stochastic 
subject interpretation and does pose probabilities at the level of the individual. The 
first of these views can be defended, but the second is very problematic. 

Between-subjects causal accounts To start with the least problematic, consider 
the statement that differences in the latent variable positions (between populations 
of subjects) causes the difference in expected item responses (between populations of 
subjects). This posits the causal relation at a between-subjects level. The statement 
would fit most accounts of causality, for example the three criteria of J.S. Mill 
(1843). These hold that X can be considered a cause of Y if a) X and Y covary, b) 
X precedes Y, and c) ceteris paribus. Y does not occur if X does not occur. In the 
present situation, we have a) covariation between the difference in position on the 
latent variable and the difference in expected item responses, b) upon the realist 
viewpoint, the difference in position on the latent variable precedes the difference 
in expected item responses, and c) if there is no difference in position on the latent 
variable, there is no difference in expected item responses. The between-subjects 
causal statement can also be framed in a way consistent with other accounts of 
causality, for example the counterfactual account of Lewis (1973), or the related 
graph-theoretical account of Pearl (1999; 2000). I conclude that a causal relation can 
be maintained in a between-subjects form. Of course, many problems remain. For 
example, most latent variables cannot be identified independent of their indicators. 
As a result, the causal account violates the criterion of separate identifiability of 
effects and causes, so that circularity looms. However, this is a problem for any 
causal account of measurement (Trout, 1999); and the main point is that the relation 
between the latent variable and its indicators can at least be formulated as a causal 
one. 

Within-subject causal accounts The individual account of causality is problem-
atic. Consider the statement that subject i's position on the latent variable causes 
subject i's item response. The main problem here is the following. One of the 
essential ingredients of causality is covariation. All theories of causality use this 
concept, be it in a real or in a counterfactual manner. If X is to cause Y, X and 
Y should covary. If there is no covariation, there cannot be causation (the reverse 
is of course not the case). One can say, for example, that striking a match caused 
the house to burn down. One of the reasons that this is possible, is that a change 
in X (the condition of the match) precedes a change in Y (the condition of the 
house). One cannot say, however, that subject i's latent variable value caused his 
item responses, because there is no covariation between his position on the latent 
variable and his item responses. An individual's position on the latent variable is, 
in a standard measurement model, conceptualized as a constant, and a constant 
cannot be a cause. The same point is made in a more general context by Holland 
(1986) when he says that an attribute cannot be a cause. 
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Counterfactuals The obvious way out of this issue is to invoke a counterfactual 
account of causation (see, for example, Lewis. 1973: Sobel. 1994). On this account, 
one analyzes causality using counterfactual alternatives. This is done by construct-
ing arguments such as 'X caused Y, because if X had not happened, ceteris paribus, 
Y would not have happened'. This is called a counterfactual account because X did 
in fact happen. For the previous example, one would have to say that 'the striking 
of the match caused the house to burn down, because the house would not have 
burned down if the match had not been struck'. For our problem, however, this 
account of causality does not really help. Of course, we could construct sentences 
like 'if subject i had had a different position on the latent variable, subject i would 
have produced different item responses', but this raises some difficult problems. 

Suppose, for example, that one has administered Einstein a number of IQ-items. 
Consider the counterfactual 'if Einstein had been less intelligent, he would have 
scored lower on the IQ-items'. This seems like a plausible formulation of the hy-
pothesis tested in a between-subjects model, and it also seems as if it adequately 
expresses the causal efficacy of Einstein's intelligence, but there are strong reasons 
for doubting whether this is the case. For example, we may reformulate the above 
counterfactual as 'if Einstein had had John's level of intelligence, he would have 
scored lower on the IQ-items'. But does this counterfactual express the causal ef-
ficacy of intelligence within Einstein? It seems to me that what we express here 
is not a within-subject causal statement at all, but a between-subjects conclusion 
in disguise, namely, the conclusion that Einstein scored higher than John because 
he is more intelligent than John. Similarly, 'if Einstein had had the intelligence of 
a fruitfly. he would not have been able to answer the IQ-items correctly' does not 
express the causal efficacy of Einstein's intelligence, but the difference between the 
population of humans and the population of fruitflies. We know that fruitflies act 
rather stupidly, and so are inclined to agree that Einstein would act equally stupidly 
if he had the intelligence of a fruitfly. And it seems as if this line of reasoning con-
veys the idea that Einstein's intelligence has some kind of causal efficacy. However, 
the counterfactual is completely unintelligible except when interpreted as express-
ing knowledge concerning the difference between human beings (a population) and 
fruitflies (another population). It does not contain information on the structure of 
Einstein's intellect, and much less on the alleged causal power of Einstein's intelli-
gence. It only contains the information that Einstein will score higher on an IQ-test 
than a fruitfly because he is more intelligent than a fruitfly - but this is exactly the 
between-subjects formulation of the causal account. Clearly, the individual causal 
account transfers knowledge of between-subjects differences to the individual, and 
posits a variable that is defined between-subjects as a causal force within-subjects. 

In other words, the within-subjects causal interpretation of between-subjects 
latent variables rests on a logical fallacy (the fallacy of division; Rorer. 1990). 
Once you think about it, this is not surprising. What between-subjects latent 
variables models do is to specify sources of between-subjects differences, but because 
they are silent with respect to the question of how individual scores are produced, 
they cannot be interpreted as posing intelligence as a causal force within Einstein. 
Thus, the right counterfactual (which is actually the one implied by the repeated 
sampling formulation of the measurement model) is between-subjects: the IQ-score 
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we obtained from the i-th subject (who happened to be Einstein) would have been 
lower, had we drawn another subject with a lower position on the latent variable 
from the population. Note, however, that the present argument does not establish 
that it is impossible that some other conceptualization of intelligence may be given 
a causal within-subject interpretation. It establishes that such an interpretation is 
not formulated in a between subjects model, and therefore cannot be extracted from 
such a model: A thousand clean replications of the general intelligence model on 
between-subjects data would not establish that general intelligence plays a causal 
role in producing Einstein's item responses. 

Exchangeability and local homogeneity But what about variables like, for exam-
ple, height? Is it so unreasonable to say that 'if Einstein had been taller, he would 
have been able to reach the upper shelves in the library'? No, this is not unrea-
sonable, but it is unreasonable to assume a priori that intelligence, as a between-
subjects latent variable, applies in the same way as height does. The concept of 
height is not defined in terms of between-subjects differences, but in terms of an 
empirical concatenation operation (Krantz, Luce, Suppes, k Tversky, 1971; Michell, 
1999; see also Chapter 4). Roughly, this means that we know how to move Einstein 
around in the height dimension (for example by giving him platform shoes), and 
that the effect of doing this is tractable (namely, wearing platform shoes will enable 
Einstein to reach the upper shelves). Moreover, it can be assumed that the height 
dimension applies to within-subject differences in the same way that it applies to 
between-subject differences. This is to say that the statements 'if Einstein had been 
taller, he would have been able to reach the upper shelves in the library' and 'if 
we had replaced Einstein with a taller person, this person would have been able to 
reach the upper shelves in the library' are equivalent with respect to the dimension 
under consideration. They are equivalent in this sense, exactly because the dimen-
sions pertaining to within and to between subjects variability are qualitatively the 
same: If we give Einstein platform shoes which make him taller, he is, in all relevant 
respects, exchangeable with the taller person in the example. I do not object to 
introducing height in a causal account of this kind, because variations in height 
have demonstrably the same effect within and between subjects. But it remains to 
be shown that the same holds for psychological variables like intelligence. 

The analogy does, however, provide an opening: The individual causal account 
could be defended on the assumption that intelligence is like height, in that the 
within-subjects and between-subjects dimensions are equivalent. However, the 
between-subjects model does not contain this equivalence as an assumption. There-
fore, such an argument would have to rest on the idea that, by necessity, there has 
to be a strong relation between models for within-subjects variability and models 
for between-subjects variability. It turns out that this idea is untenable. The reason 
for this is that there is a surprising lack of relation between within-subjects models 
and between-subjects models. 

To discuss within-subject models, we now need to extend our discussion to the 
time domain. This is necessary, because to model within-subjects variability, there 
has to be variability, and variability requires replications of some kind: and if vari-
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ability cannot result from sampling across subjects, it has to come from sampling 
within subjects. In this paradigm, one could, for example, administer Einstein a 
number of IQ-items repeatedly over time, and analyze the within-subject covaria-
tion between item responses. The first technique of this kind was Cattell's so called 
P-technique (Cattell k Cross, 1952), and the factor analysis of repeated measure-
ments of an individual subject has been refined, for example, by Molenaar (1985). 
The exact details of such models need not concern us here; what is important is 
that, in this kind of analysis, systematic covariation over time is explained on the 
basis of within-subject latent variables. So, instead of between-subjects dimensions 
that explain between-subjects covariation, we now have within-subject dimensions 
that explain within-subject covariation. One could imagine that, if the within-
subject model for Einstein had the same structure as the between-subjects model, 
then the individual causal account would make sense despite all the difficulties we 
encountered above. 

In essence, such a situation would imply that the way in which Einstein differs 
from himself over time is qualitatively the same as the way in which he differs 
from other subjects at one single time point. This way, the clause 'if Einstein 
were less intelligent' would refer to a possible state of Einstein at a different time 
point, however hypothetical. More importantly, this state would, in all relevant 
respects, be identical to the state of a different subject, say John, who is less 
intelligent at this time point. In such a state of affairs, Einstein and John would 
be exchangeable, like a child and a dwarf are exchangeable with respect to the 
variable height. It would be advantageous, if not truly magnificent, if a between-
subjects model would imply or even test such exchangeability. This would mean, 
for example, that the between-subjects five factor model of personality would imply 
a five factor model for each individual subject. If this were to be shown, the case 
against the individual causal account would reduce from a substantial objection to a 
case of philosophical hairsplitting. However, the required equivalence has not been 
shown, and the following reasons lead me to expect that it will not. in general, be 
a tenable assumption. 

The link connecting between-subjects variables to characteristics of individuals 
is similar to the link discussed in the stochastic subject formulation of latent variable 
models, where the model for the individual is counterfactually defined in terms of 
repeated measurements with intermediate brainwashing. I have already mentioned 
that Ellis & Van den Wollenberg (1993) have shown that the assumption that the 
measurement model holds for each individual subject (local homogeneity) has to 
be added to and is in no way implied by the model. One may, however, suppose 
that, while finding a particular structure in between-subjects data may not imply 
that the model holds for each subject, it would at least render this likely. Even this 
is not the case. It is known that if a model fits in a given population, this does 
not entail the fit of the same model for any given element from a population, or 
even for the majority of elements from that population (Molenaar, 1999; Molenaar. 
Huizenga, & Nesselroade, in press). 

So. the five factors in personality research are between subjects: but if a within-
subjects time series analysis would be performed on each of these subjects, we could 
get a different model for each of the subjects. In fact, Molenaar et al. (in press) 
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have performed simulations in which they had different models for each individual 
(so. one individual followed a one factor model, another a two factor model, etc.). 
It turned out that, when a between-subjects model was fitted to between-subjects 
data at any specific time point, a factor model with low dimensionality (i.e., a model 
with one or two latent variables) provided an excellent fit to the data, even if the 
majority of subjects had a different latent variable structure. 

With regard to the Five Factor Model in personality, substantial discrepan-
cies between intraindividual and interindividual structures have been empirically 
demonstrated in Borkenau & Ostendorf (1998). Mischel & Shoda (1995), Feldman 
(1995), and Cervone (1997) have illustrated similar discrepancies between intrain-
dividual and interindividual structures. This shows that between-subjects models 
and within-subject models bear no obvious relation to each other, at least not in the 
simple sense discussed above. This is problematic for the individual causal account 
of between-subjects models, because it shows that the premise 'if Einstein were less 
intelligent...' cannot be supplemented with the conclusion '...then his expected item 
response pattern would be identical to John's expected item response pattern'. It 
cannot be assumed that Einstein and John (or any other subject, for that mat-
ter) are exchangeable in this respect, because, at the individual level, Einstein's 
intelligence structure may differ from John's in such a way that the premise of the 
argument cannot be fulfilled without changing essential components of Einstein's 
intellect. Thus, the data generating mechanisms at the level of the individual are 
not captured, not implied, and not tested by between-subjects analyses without 
heavy theoretical background assumptions which, in psychology, are simply not 
available. 

The individual causal account is not merely implausible for philosophical or 
mathematical reasons; for most psychological variables, there is also no good theo-
retical reason for supposing that between-subjects variables do causal work at the 
level of the individual. For example, what causal work could the between-subjects 
latent variable we call general intelligence do in the process leading to Einstein's 
answer to an IQ-item? Let us reconstruct the procedure. Einstein enters the testing 
situation, sits down, and takes a look at the test. He then perceives the item. This 
means that the bottom-up and top-down processes in his visual system generate a 
conscious perception of the task to be fulfilled: it happens to be a number series 
problem. Einstein has to complete the series 1, 1, 2. 3, 5, 8, ..? Now he starts 
working on the problem; this takes place in working memory, but he also draws 
information from long-term memory (for example, he probably applies the concept 
of addition, although he may also be trying to remember the name of a famous Ital-
ian mathematician of whom this series reminds him). Einstein goes through some 
hypotheses concerning the rules that may account for the pattern in the number 
series. Suddenly he has the insight that each number is the sum of the previous 
two (and simultaneously remembers that it was Fibonacci!). Now he applies that 
rule and concludes that the next number must be 13. Einstein then goes through 
various motorical processes which result in the appearance of the number 13 on the 
piece of paper, which is coded as ' 1 ' by the person hired to do the typing. Einstein 
now has a 1 in his response pattern, indicating that he gave a correct response to 
the item. This account has used various psychological concepts, such as working 
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memory, long term memory, perception, consciousness, and insight. But. where, in 
this account of the processes leading to Einstein's item response, did intelligence 
enter? The answer is: nowhere. Intelligence is a concept that is intended to ac-
count for individual differences; and the model that we apply is to be interpreted as 
such. Again, this implies that the causal statement drawn from such a measurement 
model retains this between-subjects form. 

Elliptical accounts The last resort for anyone willing to endorse the individual 
causal account of between-subjects models is to view the causal statement as an 
elliptical (i.e., a shorthand) explanation. The explanation for which it is a shorthand 
would, in this case, be one in terms of processes taking place at the individual 
level. This requires stepping down from the macro-level of repeated testing (as 
conceptualized in the within subjects modeling approach) to the micro-level of the 
processes leading up to the item response in this particular situation. I will argue 
in the next paragraph that there is merit to this approach in several respects, but it 
does not really help in the individual causal account as discussed in this section. The 
main reason for this is that the between-subjects latent variable will not indicate 
the same process in each subject. Therefore, the causal agent (i.e., the position 
on the latent variable) that is posited within subjects based on a between-subjects 
model does not refer to the same process in all subjects. 

This is a problem for an elliptical account. For instance, one can say that the 
Titanic has rusted after so many years on the bottom of the sea, because it was 
made of iron. This explanation is elliptical, because it does not specify all processes 
that actually lead to the phenomenon we call rust. The reason why the explanation 
works, however, is that the explanation subsumes the Titanic under the category 
of iron things, and this category is homogeneous with respect to the processes that 
will occur when such things are left on the bottom of the ocean. Thus, one may 
look up the details of the reaction between Fe and H 2 0 that leads to rust, and 
unproblematically take these processes to apply to the Titanic. One could say 
that the category of iron things displays process homogeneity with respect to the 
situation at hand. 

In psychological measurement, such process homogeneity is not to be expected 
in most cases. This is a particularly pressing problem for models that posit con-
tinuous latent variables. The reason for this is that an elliptical explanation would 
probably refer to a qualitatively different process for different positions on the latent 
variable; probably even to different processes for different people with the same po-
sition on the latent variable. Jane, high on the between-subjects dimension general 
intelligence, will in all likelihood approach many IQ-items using a strategy that is 
qualitatively different from her brother John's. John and his nephew Peter, equally 
intelligent, may both fail to answer an item correctly, but for different reasons (e.g., 
John has difficulties remembering series of patterns in the Raven task, while Peter 
has difficulties in imagining spatial rotations). It is obvious that this problem is 
even more serious in personality testing, where we generally do not even have the 
faintest idea of what happens between item administration and item response. For 
this reason, it would be difficult to conceive of a meaningful interpretation of such 
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an elliptical causal statement without rendering it completely vacuous, in the sense 
that the position on the latent variable is a shorthand for whatever process leads 
to person's response. In such an interpretation, the within-subject causal account 
would be trivially true, but uninformative. 

However, it must be said that in this case latent class models could have an 
advantage. For instance, in the models used to model children's responses on the 
balance scale task (Jansen & Van der Maas, 1997), latent class es are considered 
to be homogeneous with respect to the strategy used to solve the items. In this 
case, the classes do have process homogeneity, and an elliptical explanation could 
be defended. The line of reasoning followed in such models could, of course, be 
extended and could lead to valid elliptical explanations of respondent behavior. 
Unfortunately, at present such cases of theoretically inspired modeling are rare. 

On the basis of this analysis, we must conclude that the within-subject causal 
statement, that subject i's position on the latent variable causes his item responses, 
does not sit well with existing accounts of causality. A between-subjects causal 
relation can be defended, although it is certainly not without problems. Such 
an interpretation conceives of latent variables as sources of individual differences, 
but explicitly abstracts away from the processes taking place at the level of the 
individual. The main reason for the failure of the within-subjects causal account 
seems to be that it rests on the misinterpretation of a measurement model as a 
process model, that is, as a mechanism that operates at the level of the individual 
(see Krueger, 1999, for an explicit example of this fallacy, and Borsboom, 2002. for 
a criticism). 

This fallacy is quite pervasive in the behavioral sciences. For instance, part 
of the nature-nurture controversy, as well as controversies surrounding the heri-
tability coefficients used in genetics, may also be due to this misconception. The 
fallacious idea, that a heritability coefficient of .50 for IQ-scores means that 50% 
of an individual's intelligence is genetically determined, remains one of the more 
pervasive misunderstandings in the nature-nurture discussion. Ninety percent of 
variations in height may be due to genetic factors, but this does not imply that my 
height is for 90% genetically determined. Similarly, a linear model for interindi-
vidual variations in height does not imply that individual growth curves are linear; 
that 30% of the interindividual variation in success in college may be predicted 
from the grade point average in high school, does not mean that 30% of the exams 
you passed were predictable from your high school grades; and that there is a sex 
difference in verbal ability does not mean that your verbal ability will change if you 
undergo a sex change operation. It will be clear to all that these interpretations 
are fallacious. Still, for some reason, such misinterpretations are very common in 
the interpretation of results obtained in latent variables analysis. However, they 
can all be considered to be specific violations of the general statistical maxim, that 
between-subjects conclusions should not be interpreted in a within-subjects sense. 
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3.3 Implications for psychology 

It is clear that between-subjects models do not imply, test, or support causal ac-
counts that are valid at the individual level. In turn, the causal accounts that can 
be formulated and supported in a between-subjects model do not address individu-
als. However, connecting psychological processes to the latent variables that are so 
prominent in psychology is of obvious importance. It is essential that such efforts 
be made, because the between-subjects account in itself does not correspond to the 
kind of hypotheses that many psychological theories would imply, as these theories 
are often formulated at the level of individual processes. The relation (or relations) 
that may exist between latent variables and individual processes should therefore 
be studied in greater detail, and preferably within a formalized framework, than has 
so far been done. In this section, I provide an outline of the different ways in which 
the relation between individual processes and between-subject latent variables can 
be conceptualized. These different conceptualizations correspond to different kinds 
of psychological constructs. They also generate different kinds of research ques-
tions and require different research strategies in order to substantiate conclusions 
concerning these constructs. 

Locally homogeneous constructs First, theoretical considerations may suggest 
that a latent variable is at the appropriate level of explanation for both between-
subjects and within-subjects differences. Examples of psychological constructs that 
could be conceptualized in this manner are various types of state-variables such as 
mood, arousal, or anxiety, and maybe some attitudes. That is, it may be hypothe-
sized, for differences in the state variable 'arousal', that the dimension on which I 
differ from myself over time, and the dimension on which I differ from other people 
at a given time point, are the same. If this is the case, the latent variable model 
that explains within-subjects differences over time must be the same model as the 
model that explains between-subjects differences. Fitting latent variable models to 
time series data for a single subject is possible (Molenaar, 1985). and such tech-
niques suggest exploring statistical analyses of case studies in order to see whether 
the structure of the within-subject latent variable model matches between-subjects 
latent variables models. If this is the case, there is support for the idea that we 
are talking about a dimension that pertains both to variability within a subject 
and between-subjects variability. Possible states of a given individual would then 
match possible states of different individuals, which means that, in relevant re-
spects, the exchangeability condition discussed in the previous section holds. Thus, 
in this situation we may say that a latent variable does explanatory work both 
at the within-subject and the between-subjects level, and a causal account may 
be set up at both of these. Following the terminology introduced by Ellis & Van 
den Wollenberg (1993) I propose to call this type of construct locally homogeneous, 
where 'locally' indicates that the latent variable structure pertains to the level of 
the individual, and 'homogeneous' refers to the fact that this structure is the same 
for each individual. 
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Locally heterogeneous constructs Locally homogeneous constructs will not often 
be encountered in psychology, where myriads of individual differences can be ex-
pected to be the rule rather than the exception. I would not be surprised if. for 
the majority of constructs, time series analyses on individual subjects would indi-
cate that different people exhibit different patterns of change over time, which are 
governed by different latent variable structures. So. for some people, psychological 
distress may be unidimensional. while for others it may be multidimensional. If this 
is the case, it would seem that we cannot lump these people together in between-
subjects models to test hypotheses concerning psychological processes, for they 
would constitute a heterogeneous population in a theoretically important sense. At 
present, however, we do not know how often and to what degree such a situation 
occurs, which makes this one of the big unknowns in psychology. This is because 
there is an almost universal - but surprisingly silent - reliance on what may be 
called a uniformity of nature assumption in doing between-subjects analyses; the 
relation between mechanisms that operate at the level of the individual and models 
that explain variation between individuals is often taken for granted, rather than 
investigated. For example, in the attitude literature (Cacioppo & Berntson, 1999; 
Russell & Carroll, 1999) there is currently a debate on whether the affective com-
ponent of attitudes is produced by a singular mechanism, which would produce a 
bipolar attitude structure (with positive and negative affect as two ends of a single 
continuum), or should be conceptualized as consisting of two relatively independent 
mechanisms (one for positive, and one for negative affect). This debate is charac-
terized by a strong uniformity assumption: It either is a singular dimension (for 
everyone), or we have two relatively independent subsystems (for everyone). It is, 
however, not obvious that the affect system should be the same for all individuals; 
for it may turn out that the affective component in attitudes is unidimensional for 
some people but not for others. It must be emphasized that such a finding would 
not render the concept of attitude obsolete; but clearly, a construct governed by 
different latent variable models within different individuals will have to play a differ-
ent role in psychological theories than a locally homogeneous construct. I propose 
to call such constructs locally heterogeneous. Locally heterogeneous constructs may 
have a clear dimensional structure between subjects, but they pertain to different 
structures at the level of individuals. Thus, we now have a distinction between two 
types of constructs: locally homogeneous constructs, for which the latent dimen-
sion is the same within and between subjects, and locally heterogeneous constructs, 
for which this is not the case. Locally homogeneous constructs allow for testing 
hypotheses concerning individual processes, modules, and subsystems, through the 
analysis of between-subjects variability, while locally heterogeneous constructs do 
not. In applications, it is imperative that we find out about which of the two we 
are talking, especially when we are testing hypotheses concerning processes at the 
individual level with between-subjects models. 

Locally irrelevant constructs It will be immediately obvious that constructs which 
are hypothesized as relatively stable traits, such as the factors in the Big Five, will 
not exhibit either of these structures. If a trait is stable, covariation of repeated 
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measurements will not obey a latent variable model at all. All variance of the 
observed variables will be error variance, so that this implies that these observed 
variables will be independent over time. This hypothesis could, and should, be 
tested using time series analysis. If it holds, the latent variable in question would 
be one that produces between-subjects variability, but does no work at the indi-
vidual level. I propose to call this type of construct a locally irrelevant construct. 
This terminology should not be misread as implying a value judgment, as locally 
irrelevant constructs have played, and will probably continue to play, an important 
role in psychology. However, the terminology should be read unambiguously as 
indicating the enormous degree to which such constructs abstract from the level of 
the individual. They should, for this reason, not be conceptualized as explaining 
behavior at the level of the individual. In the personality literature, this has been 
argued on independent grounds by authors such as Lamiell (1987), Pervin (1994), 
and Epstein (1994). 

It is disturbing, and slightly embarrassing for psychology, that we cannot say 
with sufficient certainty in which of these classes particular psychological constructs 
(e.g., personality traits, intelligence, attitudes) fall. This is the result of a century of 
operating on silent uniformity of nature assumptions by focussing almost exclusively 
on between-subjects models. It seems that psychological research has adapted to 
the limitations of common statistical procedures (for example, by abandoning case 
studies because analysis of variance requires sample sizes larger than one), instead 
of inventing new procedures that allow for the testing of theories at the proper level, 
which is often the level of the individual, or at the very least exploiting time series 
techniques that have been around in other disciplines (e.g., econometrics) for a 
very long time. Clearly, extending measurements into the time domain is essential, 
and fortunately the statistical tools for doing this are rapidly becoming available. 
Models that are suited for this task have seen substantial developments over the 
last two decades (see, for example, Molenaar, 1985; McArdle, 1987; Wilson, 1989; 
Fischer & Parzer, 1991). and powerful, user friendly software for estimating and 
testing them has been developed (Jöreskog & Sörbom, 1993; Muthén k. Muthén, 
1998; Neale, Boker, Xie, & Maes, 1999). Especially, it would be worthwhile to try 
latent variable analyses at the level of the individual, which would bring the all 
but abandoned case study back into scientific psychology - be it, perhaps, from an 
unexpected angle. 

Ontology revisited There remains an open question pertaining to the ontological 
status of latent variables, and especially those that fall into the class of locally ir-
relevant constructs. It has been argued here that latent variables, at least those of 
the reflective kind, imply a realist ontology. How should we conceptualize the exis-
tence of such latent variables, if they cannot be found at the level of the individual? 
It seems that the proper conceptualization of the latent variable (if its reality is 
maintained) is as an emergent property, in the sense that it is a characteristic of an 
aggregate (the population) which is absent at the level of the constituents of this 
aggregate (individuals). Of course, this does not mean that there is no relation be-
tween the processes taking place at the level of the individual and between-subjects 
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latent variables. In fact, the between-subjects latent variable must be parasitic on 
individual processes, because these must be the source of between-subjects vari-
ability. If it is shown that a given set of cognitive processes leads to a particular 
latent variable structure, we could therefore say that this set of processes realizes 
the latent variables in question. The relevant research question for scientists should 
then be: which processes generate which latent variable structures? What types 
of individual processes, for example in intelligence testing, are compatible with the 
general intelligence model? 

Obviously, time series analyses will not provide an answer to this question in the 
case of constructs that are hypothesized to be temporally stable, such as general 
intelligence. In this case, we need to connect between subjects models to models of 
processes taking place at the level of the individual. This may involve a detailed 
analysis of cognitive processes that are involved in solving IQ-test items, for ex-
ample. Such inquiries have already been carried out by those at the forefront of 
quantitative psychology. Embretson (1994), for example, has shown how to build 
latent variable models based on theories of cognitive processes; and one of the in-
teresting features of such inquiries is that they show clearly how a single latent 
variable can originate, or emerge, out of a substantial number of distinct cognitive 
processes. This kind of research is promising and may lead to important results in 
psychology. I would not be surprised, for example, if it turned out that Sternberg's 
(1985) triarchie theory of intelligence, which is largely a theory about cognitive 
processes and modules at the level of the individual, is not necessarily in conflict 
with the between-subjects conceptualization of general intelligence. Finally, I note 
that the connection of cognitive processes and between-subjects latent variables 
requires the use of results from both experimental and correlational psychological 
research traditions, which Cronbach (1957) has called the two disciplines of scien-
tific psychology. This section may therefore be read as a restatement of his call for 
integration of these schools. 

3.4 Discussion 

Latent variable models introduce a hypothetical attribute to account for relations 
among observable variables. In a measurement context, they assert that a number 
of items measure the same latent variable. This requires a realist ontology for the 
latent variable, and a good deal of theory realism for the postulated model. In 
comparison to classical test theory, latent variable theory is certainly a substan-
tial improvement. It specifies a relation between item responses and the attribute 
measured, which means that it can be properly considered to give a theory of mea-
surement. Upon closer examination, however, the specific interpretation of the 
measurement relation is not without problems. Given the realist interpretation of 
latent variables, causality can be considered a natural candidate, and formulated 
in terms of subpopulation distributions, a causal account can indeed be defended. 
The within-subject interpretation of the model, however, is extremely problematic. 

Before I discuss some implications of these results, there are two important 
asides to make concerning what I am not saying. First, it is not suggested here that 
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one cannot use a standard measurement model, and still think of the latent variable 
as constructed out of the observed variables or as a fiction. But I do insist that 
this is an inconsistent position, in that it cannot be used to connect the operational 
latent variable to its formal counterpart in a consistent way. Whether one should 
or should not allow such an inconsistency in one's reasoning is a different question 
that is beyond the scope of this chapter. Second, if one succeeds in fitting a latent 
variable model in a given situation, the present discussion does not imply that one 
is forced to believe in the reality of the latent variable. In fact, this would require a 
logical strategy known as 'inference to the best explanation' or 'abduction', which is 
especially problematic in the light of underdetermination. So I am not saying that, 
for example, the fit of a factor model with one higher order factor to a set of IQ 
measurements implies the existence of a general intelligence factor: what I am saying 
is that the consistent connection between the empirical and formal side of a factor 
model requires a realist position. Whether realism about specific instances of latent 
variables, such as general intelligence, can be defended is an epistemological issue 
that is the topic of heated discussion in the philosophy of science (see, for example 
Van Fraassen, 1980; Cartwright, 1983; Hacking, 1983; Devitt, 1991). Probably, on 
the epistemological side of the problem, there are few latent entities in psychology 
that fulfill the epistemological demands of realists such as Hacking (1983). 

It will be felt that there are certain tensions in the application of latent variable 
models to psychological measurement. I have not tried to cover these up, because I 
think they are indicative of some fundamental problems in psychological measure-
ment and require a clear articulation. The realist interpretation of latent variable 
theory leads to conclusions that will seem too strong for many psychologists. Psy-
chology has a strong empiricist tradition and psychologists often do not want to go 
beyond the observations - at least, no further than strictly necessary. As a result, 
there is a feeling that realism about latent variables takes us too far into metaphys-
ical speculations. At the same time, we would probably like latent variable models 
to yield conclusions of a causal nature (the model should at the very least allow for 
the formulation of such relations). But we cannot defend any sort of causal struc-
ture invoking latent variables, if we are not realists about these latent variables, in 
the sense that they exist independent of our measurements: One cannot claim that 
A causes B, and at the same time maintain that A is constructed out of B. If we 
then reluctantly accept realism, invoking perhaps more metaphysics than we would 
like, it appears that the type of causal conclusions available are not the ones we 
desired. Namely, the causality in our measurement models is only consistently for-
mulated at the between-subjects level. And although the boxes, circles, and arrows 
in the graphical representation of the model suggest that the model is dynamic and 
applies to the individual, upon closer scrutiny no such dynamics are to be found. 
Indeed, this has been pinpointed as one of the major problems of mathematical 
psychology by Luce (1997): our theories are formulated in a within-subjects sense, 
but the models we apply are often based solely on between-subjects comparisons. 

What are the consequences of this problem for the conception of psychological 
measurement that latent variable theory offers? It depends on how you look at it. 
If one accepts the possibility that a causal account can apply to characteristics of 
populations, without applying to each element of these populations, the problems 
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are relatively small. Such causal accounts are not uncommon: Variation in the 
variable 'smoking' causes variation in the variable 'cancer', but it does not do so 
for each person. Still. I think that causality can be meaningfully applied in this 
case, be it with the understanding that its validity at the population level does not 
imply that the causal relation holds for each individual. Upon such a view, one 
does have to settle for a measurement relation that is solely expressed in terms of 
variation: Variation on the latent variable causes variation on the observables, but 
for a single person the latent variable does not have to play a role in this respect. 
One could argue against this view by saying that, if a causal model is invalid for 
each individual, then it cannot be valid in the population. Upon this view, a causal 
account of the measurement process is impossible in the locally heterogeneous and 
locally irrelevant cases. I think such a view is too restrictive, because it would imply 
that it is impossible to measure between-subjects differences in attributes, if these 
attributes are inherently stable within-subjects. This would mean, for instance, that 
genotypic differences cannot be measured through phenotypic effects. However, if 
the purpose of a measurement procedure is to measure differences between subjects, 
then one cannot hold it against the procedure that its results do not apply to 
differences within subjects. It does seem that these are radically different levels of 
explanation, and therefore they should not be mixed up. 

The same causal account of measurement can be set up within persons, of course, 
and in the special case that the between-subjects and the within-subjects accounts 
are both valid, one is in the lucky position to draw within-subject conclusions on 
the basis of between-subjects data. Whether this assumption applies, how one 
could gather evidence for it, and which constructs are supposed to be candidates 
for it in the first place, are important but neglected questions in psychology, as has 
been argued in this chapter. However, if one takes the position that measurement 
can apply to sources of variation in a population, without applying directly to 
the individuals that make up this population, then latent variable theory does not 
necessarily disqualify as a theory of measurement in the locally heterogeneous and 
locally irrelevant cases. It may be that the analysis given suggests that we are not 
measuring the right things, i.e., that we are not investigating what we would want 
to investigate, but this is not a conceptual problem for latent variable theory. It 
is a conceptual problem for psychology and for the way it utilizes latent variable 
models. 

For now, I contend that latent variable theory can offer a quite elegant account 
of the measurement process. The theory has several notable benefits. First, it 
places the attribute in the measurement model in a way that seems very plausible: 
Differences in the attribute (either within or between subjects) lead to differences 
in the observations. It is clear that such a view requires both realism about the at-
tribute and a causal interpretation of the measurement process. Second, although 
this view introduces some heavy metaphysics, the metaphysics are clearly neces-
sary, serve a clear purpose, and in fact lead to some interesting research questions. 
This is a substantial improvement over the classical test theory model, which has 
metaphysics wandering all over the place for no clear purpose except to be able to 
construct mathematically simple equations. Third, the latent variable view seems 
to align closely with the way many working researchers think about measurement. 
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This property cannot be ascribed to the classical test model, and neither to the 
fundamental measurement model, as will be argued in the next chapter. The latent 
variable model is, of course, in danger of misinterpretation. However, if the fact 
that a technique is easily misinterpreted were to be held against it, methodology 
and statistics would probably be empty within a day. At present, latent variable 
theory must be considered to formulate a plausible philosophy of measurement. 





4. SCALES 

It may be that the task of the new 
psychometrics is impossible; that fun-
damental measures will never be con-
structed. If this is the case, then the 
truth must be faced that perhaps psy-
chology can never be a science... 
- Paul Kline, 1998 

4.1 Introduction 

In the 1930's, the British Association for the Advancement of Science installed 
a number of its members with a most peculiar task: To decide whether or not 
there was such a thing as measurement in psychology. The commission, consisting 
of psychologists and physicists (among the latter was Norman Campell, famous for 
his philosophical work on measurement), was unable to reach unanimous agreement. 
However, a majority of its members concluded that measurement in psychology was 
impossible; Campbell (cited in Narens & Luce, 1986, p. 186). for example, asked 
"why do not psychologists accept the natural and obvious conclusion that subjective 
measurements (...) cannot be the basis of measurement". Similarly, Guild (cited 
in Reese, 1943, p.6) stated that "to insist on calling these other processes [i.e., 
attempts at psychological measurement] measurement adds nothing to their actual 
significance, but merely debases the coinage of verbal intercourse. Measurement is 
not a term with some mysterious inherent meaning, part of which may be overlooked 
by the physicists and may be in course of discovery by psychologists''. For this 
reason, Guild concluded that using the term 'measurement' to cover quantitative 
practices in psychology "does not broaden its meaning but destroys it". Reese (1943, 
p. 6) summarized the ultimate position of the commission: "They [the members 
of the commission] argue that psychologists must then do one of two things. They 
must either say that the logical requirements for measurement in physics, as laid 
down by the logicians and other experts in the field of measurement, do not hold 
for psychology, and then develop other principles that are logically sound; or they 
must admit that their attempts at measurement do not meet the criteria and both 
cease calling these manipulations by the word 'measurement' and stop treating the 
results obtained as if they were the products of true measurement". 

It would seem that the members of the commission anticipated that the al-
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ternative 'logically sound' principles for 'true measurement' in psychology would 
probably never be discovered. But perhaps they did anticipate their report to have 
the desired impact in the sense that psychologists would finally recognize their er-
rors, and would stop the unauthorized use of terms like measurement and quantity. 
Interestingly, exactly the opposite has happened: Psychologists have developed an 
alternative, but generally use the term 'measurement' to denote every procedure 
of assigning numbers except the logically 'correct' one. That is, the theory of fun-
damental measurement (the "true' measurement theory to which Guild refers) has 
been extended in such a manner that 'logically sound' principles have become avail-
able for psychological measurement situations, primarily through the development 
of conjoint measurement structures (Luce & Tukey, 1964; Krantz, Suppes, Luce, 
& Tversky, 1971). Ironically, however, not a soul uses that theory in the practice 
of psychological measurement: Every year there appears an enormous number of 
books that have 'psychological measurement' in the title, but few of them even con-
tain a reference to this work. The logical foundation for psychological measurement 
has thus become available, only to be neglected by its presumed audience - and 
psychologists have continued to use the term measurement for everything else. 

The gist of what has been called the 'axiomatic' approach to measurement (Cliff, 
1992), of which the theory of fundamental measurement can be considered a special 
case, is that measurement is an essentially representational activity, i.e., a process 
of assigning numbers in such a manner as to preserve basic qualitative relations 
observed in the world (Narens & Luce, 1986). The result of this activity is called 
a measurement scale. Psychologists are familiar with this concept mainly through 
Stevens' (1946) famous typology of 'levels of measurement' in terms of nominal, 
ordinal, interval, and ratio scales. The scale type is often deemed very important 
for determining what kind of statistics may be used, and in this manner it exerts 
considerable influence on the practice of data analysis in psychology (or, in any 
event, on the conscience of psychologists doing the analyses). The prescriptive as-
pect of scales has been the subject of enduring controversies between measurement 
theoreticians and statisticians (Lord, 1953; Stevens, 1968; Gaito, 1980; Townshend 
& Ashby, 1984; Michell, 1986: Velleman & Wilkinson, 1993), mainly because statis-
ticians refuse to be told what is admissible and what not by what they seem to 
perceive as an utterly impractical theory (Lord, 1953; Gaito, 1980). However, 
apart from generating such controversies and acting on the psychologist's statisti-
cal conscience, scales and the associated theory of measurement have not entered 
mainstream psychology at all (Cliff, 1992). 

This does not mean that nobody works with representationalism in psychology. 
The original developers of the theory, such as Luce, Suppes, and Narens, continue 
to work out the mathematical basis of measurement theory, joined by a group of 
researchers united in the Society for Mathematical Psychology. In a completely 
different corner of psychology, the advocates of Rasch measurement frequently al-
lude to the fundamental measurement properties of the Rasch model; notable in 
this context are Wright (1997), Roskam (1984), and Bond & Fox (2001). Finally, 
at a more conceptual level Michell (1990; 1997) has attacked the common practice 
in psychology and psychometrics using a line of reasoning based on the axiomatic 
theory of measurement. His efforts have had impact on at least one psychometrician 
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(Kline, 1998), and may well influence more. These researchers look to the future, 
and some of them seem to regard the coming of the "revolution that never hap-
pened" (Cliff, 1992) as the only road to a truly scientific psychology (Kline, 1998; 
Bond & Fox, 2001). Or, like Luce (1996, p. 95), they view such developments as 
simply "inevitable", so that "the only question is the speed with which they are 
carried out". 

The axiomatic theory of measurement thus has a certain apologetic quality about 
it. It is also strongly normative, or even prescriptive, as is evidenced by terminology 
such as 'admissible transformations', and the idea that performing an inadmissible 
transformation destroys the 'meaningfulness' of conclusions based on the data (see 
Michell, 1986, for a discussion of this view). Now, methodology is in a sense always 
normative, but there is no approach in psychological measurement - not even in 
latent variables analysis - that so pertinently presents itself as the gatekeeper of 
rationality. Treatises based on the approach also insist on empirical testability 
of hypotheses in a manner that almost suggests that, if a hypothesis cannot be 
directly tested, it is meaningless, or at the very least suspect. For example, Michell 
(2000) has characterized the a priori assumption that psychological attributes are 
quantitative, which indeed is a strong metaphysical assumption in many latent 
variable models, as a methodological thought disorder, and this leads him to label 
the entire field of psychometrics as pathological. The reason for this disqualification 
seems to be that the hypothesis is not directly testable in commonly used models like 
the factor model. Those familiar with the philosophy of science may see a parallel 
with a historical movement that shared both the strong normativity, the desire 
to demarcate between meaningful and meaningless propositions, and the emphasis 
on the dangers of metaphysics - namely, the Vienna Circle. In this respect it is 
interesting to note that fundamental measurement theory originated in roughly the 
same period as logical positivism - a mere two years separate Campbell's (1920) 
Physics: The elements and Wittgenstein's (1922) Tractatus Logico-Philosophicus. 
There seems to be a certain similarity between, on the one hand, the divide between 
the empiricist, verificationist orientation of logical positivism and the robust realist, 
falsificationist philosophy of Popper (1959), and, on the other hand, the schism 
between representational measurement theory and the latent variables approach. 

This chapter develops this intuition by inquiring into the status of the mea-
surement scale, the central concept of representational measurement. This inquiry 
serves two purposes. First, in view of the critical commentaries of Michell (1990; 
1999; 2000), Kline (1998), and the Rasch movement (Bond k Fox. 2001), it is im-
portant to scrutinize the axiomatic approach to measurement carefully - not only 
with respect to its alleged normative force, but also with respect to the philosophi-
cal ideas on which it is based. But second, the present chapter will add considerable 
clarification to the strong conclusions reached in the previous chapter, by showing 
what a truly empiricist theory of measurement looks like. For representational mea-
surement theory, when compared to the latent variables approach, is almost devoid 
of metaphysics. It explicitly recognizes that measurement scales are constructions, 
and in fact builds upon this idea in a way that, it must be said, is consistent, elegant, 
and powerful. Therefore, the representational measurement approach introduces a 
sharp contrast, which brings out the realism inherent in latent variable models 
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stronger than any argument could do by itself. However, the present investigation 
will show that the idea, that measurement is a representational activity, is unsat-
isfying on a number of counts. In fact, it is argued here that representationalism 
fails to address some crucial issues in psychological measurement. The relevance of 
representational measurement for psychological research is therefore concluded to 
be limited. 

4.2 Three perspectives on measurement scales 

Representational measurement theory is aimed at specifying the conditions neces-
sary for the construction of an adequate representation of empirical relations in 
a numerical system. From a formal perspective, this is conceptualized in terms 
of a mapping of one set of relations into another. The resulting representation is 
considered adequate if it preserves the observed, empirical relations. Semantically, 
the interpretation of the measurement process is in terms of a reconstruction of the 
measurement process. For example, numerical operations are conceptualized as cor-
responding to empirical operations, even though no scientist ever carried out these 
operations in the manner described by the theory. From an ontological perspective, 
scales cannot be considered anything but a construction. It could, of course, be held 
that these scales have referents in reality, for example objective magnitudes. How-
ever, such a realist interpretation, if endorsed, is external to the model, in contrast 
to the inherent realism in latent variables analysis. 

4.2.1 The formal stance 
Syntax Representational measurement theory constructs measurement as the map-
ping of objects and relations between objects from an empirical domain into a nu-
merical domain. Both are characterized in terms of set theory (Scott & Suppes, 
1958; Suppes & Zinnes, 1963). We imagine a set of objects, which is is denoted A, 
and a set of n relations holding between these objects, denoted Ri, R2,..., Rn. A 
relation between objects may, for example, be one of dominance between objects 
(e.g., John is larger than Jane), between objects and stimuli (e.g., John 'dominated' 
an IQ-test item by solving it), or between stimuli (e.g. item 1 is more difficult than 
item 2). It may also be one of proximity or similarity (e.g., John's political orien-
tation is more similar to Jane's than to Peter's), which may again be considered in 
terms of similarity between objects, between stimuli, or between objects and stimuli 
(Coombs, 1964). Still other relations may be based on preference orderings, as is 
common in subjective expected utility theory. Whatever the precise nature of the 
relations is taken to be, they are always taken to be purely qualitative (representa-
tionalism takes 'larger than' to be a qualitative comparison). Often, there is some 
operation that can be interpreted as 'combining' two objects to create a new one. 
This combining operation is denoted ©. Sometimes this operation is empirical, 
such as laying two rods end-to-end to create a new one, and in this case we speak 
of extensive measurement. Such an empirical operation of combining is known as a 
concatenation operation. Campbell (1920) believed that fundamental measurement 
must be extensive, that is, there must exist an empirical concatenation operation, 
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and treated all other measurement as 'derived' from these fundamental measures. 
However, it was later shown that there are cases where representational measure-
ment works without there being an empirical concatenation operation (Luce & 
Tukey, 1964; Krantz, Luce, Suppes, & Tversky, 1971). 

Taken together, the set of objects, the relation between them, and the combin-
ing operation form what is called an empirical relational system which we will call 
O. which may be read as a shorthand for 'observed'. This system is denoted as 
Ö = (A, R, ©). Now it is the business of representationalism to construct, entirely 
on the basis of the observed relations between objects in the set and the combina-
tions of these objects, a numerical representation which preserves the information 
in the empirical system. This basically comes down to assigning to each object in 
A a number from some numerical domain N, to find a mathematical relation S 
that represents the empirical relation R, and to find a mathematical operation * 
that matches the combining operation ffi. The resulting representational system, 
call it 1Z, a shorthand for 'representation', is then denoted 1Z = (TV, S,*). Because 
the representation preserves all the information that was present in the empirical 
system, the relation between these systems is one of homomorphism (it is not iso-
morphic because more than one of the elements in the empirical system may map 
to the same number in the representational system). The combination of Ö and 1Z 
is called a measurement structure. Measurement, in the representationalist view, is 
thus essentially a homomorphic representation of objects in a numerical system. 

Representational measurement is called axiomatic, because its main strategy is 
1) to assume certain axioms to hold with respect to the objects and the relations 
among them, 2) to prove mathematically that, given these relations, a homomor-
phic representation is possible (this is done in a representation theorem), and 3) 
to show under which transformations of the scale values this homomorphism is 
preserved (this is done in a uniqueness theorem). The latter proof essentially char-
acterizes the transformations under which the representation stays invariant. It 
can be interpreted in terms of automorphisms (Narens & Luce, 1986): This means 
that the uniqueness theorem states the class of transformations which may be used 
to map the representation into itself, in such a way that no information is lost. 
Uniqueness results form the basis for the well-known 'levels of measurement' intro-
duced by Stevens (1946). If the structure of the representation is invariant under 
all one-one transformations, we have a nominal scale; if it is invariant under all 
monotonie transformations, we have an ordinal scale; if it is invariant under all lin-
ear transformations, we have an interval scale; and if it is invariant under all affine 
transformations, we have a ratio scale. These four scale types do not exhaust the 
possible scale types (Krantz, Luce, Suppes, & Tversky, 1971). but will do for the 
present exposition. 

Semantics The semantics of representationalism vary somewhat depending on 
whether one considers extensive measurement, for which a concatenation operation 
exists, or other forms of measurement. In the extensive case, the semantics can 
be based on a rather concrete connection of the measurement process and the ma-
nipulation of the assigned numbers through the concatenation operation, which is 



80 Scales 

itself mapped into a numerical operation. In cases of measurement that are not 
characterized by concatenation, the semantics of the theory are limited to represen-
tation itself. Here, the discussion will be limited to extensive measurement and one 
particularly important nonextensive case, namely additive conjoint measurement. 

Extensive measurement The semantics of representationalism, and especially of 
extensive fundamental measurement as envisioned by Campbell (1920), are exquisite. 
The typical example for which the construction of representational scales is illustra-
tive is the measurement of length. In this case, one may consider a set of objects, 
say, people, to form the set A. Further, a qualitative relation can be constructed 
as 'not noticeably longer than', denoted by X, where 'Jane ;< John' means 'Jane is 
not noticeably longer than John'. Finally, a concatenation operation © is available, 
namely we can lay Jane and John head-to-feet and compare the resulting combined 
entity, 'JaneffiJohn' to other people, or concatenations of other people, in the set. 
This gives the empirical relational system Ö = {A, ;<,©). Now, we can map the 
relations in the empirical relational system into a numerical system in such a man-
ner that all relations, holding between the objects in the empirical set, continue to 
hold between the numbers representing these objects. So, if Jane is is not noticeably 
longer than John, then the number representing Jane must be smaller than or equal 
to the number representing John. We can, as is usual among representational mea-
surement theorists as well as carpenters, construct the representation in the set of 
positive real numbers, Re+, so that each person is represented by a number in this 
set. A common way to do this is by comparing an object to a unit of measurement, 
such as a centimeter, by counting the number of units that must be concatenated 
in order to match the object. This is done through the construction of a so-called 
standard sequence of equal intervals (Krantz, Luce, Suppes, & Tversky, 1971). A 
ruler with centimeter marks is an instantiation of a standard sequence. Further 
we choose the empirical relation < to be represented by the numerical relation <, 
and the concatenation operation © by the numerical operation +. Suppose that 
John is assigned the value 0(John) = 1.85 in the meter scale, and Jane the value 
^(Jane) = 1.75, so that </>(Jane) < </>(John). Now a comparison between John and 
Jane, with the unaided eye, will reveal that Jane is not noticeably longer than John, 
i.e., Jane^John. So, it is indeed the case that < does a good job of representing 
<. The representation will hold for all people a, b.... in the set A, and the tech-
nical way of expressing this is to say that a < b if and only if <j)(a) < <j>{b). Also, 
we will find that the value assigned to the combined object Jane©John will be 
0(Jane © John) = 3.60, which is equal to 0(Jane) + 0(John) = 1.75 + 1.85 = 3.60. 
The representation of © by + is therefore also adequate. It can furthermore be 
shown that the representation preserves all relevant relations in the empirical sys-
tem, such as transitivity (if Jane^John, and John^Peter, then Jane^Peter). 

Thus, the mappings of the objects in A into numbers in Re+, of < into <, 
and of © into + have succeeded. Moreover, it can be proven that the scale is 
invariant up the the choice for a unit of measurement (this is to say that it does not 
matter whether we express someone's height in centimeters or in meters, as long 
as we do this consistently). Thus, the scale is insensitive to transformations of the 
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form <p'{a) = c<p(a), where <p{a) is the original scale value, c represents a change 
in unit of measurement, and 4>'(a) is the resulting transformed value. This means 
that, if John and Jane are measured in centimeters rather than meters (so that 
c = 100), all relations will continue to hold. For example, 0'(Jane) + 0'(John) = 
175 + 185 = 360 will continue to match 0'(Jane © John) = 360. However, if we use 
a centimeter instead of a meter and give each measured object a bonus length of 
100 centimeters (so that we are in fact performing a linear transformation of the 
form 4>"(a) = 100 x 0(a) + 100), the mapping is destroyed. For now we would get, 
for Jane separately, 0"(Jane) = 100 x 1.75 + 100 = 275, and, for John separately, 
0"(John) = 100 x 1.85+100 = 285. So, the sum of their scale values equals 560. But 
the concatenated object Jane© John, when measured with this bonus centimeter, 
would receive a scale value of 0"(Jane © John) = 100 x $(Jane © John) + 100 = 
360 + 100 = 460. Thus, the mathematical operation + ceases to be an adequate 
representation of the empirical operation ffi. The scale values may be multiplied, 
but not translated, because this destroys the homomorphism between the empirical 
and numerical systems. This is one way of saying that the measurement of length 
is on a ratio scale. 

Campbell (1920) held that measures that are extensive are the only genuine cases 
of fundamental measurement. However, Michell (2000; 2001) has noted the inter-
esting fact that the German mathematician Holder had already shown in 1901 that 
Campbell was incorrect; he had axiomatically proven that distance was quantita-
tive without invoking a concatenation operation. Campbell and his contemporaries 
were apparently unaware of Holder's work (Michell, 2001), and fervently defended 
the thesis that measurement without concatenation was not really measurement 
at all. This was the (incorrect) basis of the critique of the commission installed 
by the British Association for the Advancement of Science; for in psychology, it 
is generally difficult to identify an empirical concatenation operation. What this 
would require is something like the following. Suppose that I were to administer an 
intelligence test to a number of people (objects). Suppose further that John scores 
100, and Jane scores 120. Now if I could concatenate (combine) the objects (Jane 
and John) in a suitable way, and this combination were shown to produce a score 
of 100 + 120 = 220, and if this were true not only for John and Jane but for all 
combinations of people, then I would have shown that an empirical concatenation 
operation exists and matches the numerical operation of addition. In general, this 
will not work in psychological measurement. Whether this is important or not is 
questionable, given the fact that, for centuries, carpenters and tradespeople did 
quite well in measuring all kinds of things without being aware of the importance 
of a concatenation operation, and in fact measured many attributes for which no 
concatenation operation was known (such as temperature). Fortunately, nobody 
listened to the commission members, for it seems that if we had to wait for em-
pirical concatenation operations to be identified before we started measuring, any 
attempt at constructing psychological measurement instruments would surely be 
nipped in the bud. Now, the fortunate development of measurement theory has 
been to reject the restrictive account of Campbell, and to replace it with a more 
liberal account. The unfortunate development has been that some theorists have 
elevated the resulting framework to the same normative level that was originally 
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occupied by Campbell's theory, thus stating that there cannot be measurement if 
there is no homomorphic representation. 

Conjoint measurement Although the viewpoints of the commission of the British 
Association for the Advancement of Science were unreasonable, the discussion of 
psychological measurement that followed the publication of the commission's report 
was instrumental in the development of measurement theory. In fact, the mathe-
matical psychologists that took up the challenge ended up with a formalization of 
measurement that was far more powerful than Campbell's own, and has perhaps 
even been more important for physics than for psychology. The response of psy-
chologists started with the explicit articulation of representationalism by Stevens 
(1946). Stevens' representationalism leaned heavily towards operationalism, be-
cause he defined measurement as "the assignment of numerals according to rule", 
where the nature of the rule involved is left unspecified, and Stevens was quite 
clear that this can be any rule. So, in Stevens' version, measurement occurs more 
or less by fiat; consequently, it is meaningless to ask whether something is 'really' 
being measured, because the fact that numerals are assigned according to rule is 
the sole defining feature of measurement. There is neither a need nor a place for 
postulating attributes which are prior to the measurement operation, as is explicitly 
done in latent variable theory. Representationalism, as it developed in the work of 
Krantz, Luce, Suppes, & Tversky (1971), followed Stevens in dropping the concate-
nation operation, and also retained the idea that measurement theory is a theory 
about numerical assignments. However, not any rule of assignment will do, because 
the assignment rule used must preserve the empirical relations as laid down in the 
empirical relational system. In essence, this boils down to the fact that representa-
tionalism takes off when the empirical relational system is already known, and then 
views it as its task not to explain how this relational system came into being (which 
many would consider to be the goal of latent variable models), but to formulate the 
rules for numerical assignment that preserve the relations in the system. 

The broadening of the semantics associated with representationalism, which was 
a direct result of dropping the demand for empirical concatenation operations, pro-
vided an opening for constructing psychological measurement systems. For in this 
more liberal approach, measurement is no longer seen as necessarily representing 
empirical operations; any representation that mirrors empirical relations will do, 
if it complies with the demand that it forms a homomorphic representation. This 
follows directly from Stevens' move, which for a large part consisted in drawing 
attention away from the manner in which measurements are obtained (i.e., through 
concatenation), and towards their relations-preserving character. It also avoids the 
pitfall of degrading into operationalism, however, because it is possible that the 
relational system originates from distinct modes of assignment for different parts 
of the system. This is important, for while it may be possible to concatenate rigid 
rods of manageable length, it is arguably difficult to concatenate objects to match 
interstellar distances, or to place Jupiter on a balance scale. Still, my Encyclopedia 
mentions the fact that the average distance between the earth and the sun is about 
149597890 kilometers, and that the mass of Jupiter is approximately 1.967 x 1027 
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kilograms; and I strongly suspect that the writers of my Encyclopedia mean these 
statements to refer to qualitatively the same dimensions as, say, the distance be-
tween my cup of coffee and my telephone, and the mass of the computer I am now 
working on. In the rigid version of measurement theory, which leads directly to 
Bridgman's (1927) operationalism, these interpretations are not warranted; but in 
the more liberal representationalist interpretation, they are. Moreover, any imag-
inable structure that allows for a homomorphic representation can be subsumed 
under the general category of measurement. This includes structures observed in 
psychological measurement. 

The class of structures most important to the present discussion is the class 
of additive conjoint structures (Luce & Tukey, 1964; , Luce, Suppes, & Tversky, 
1971: Narens & Luce, 1986). Additive conjoint structures pertain to relations be-
tween at least three variables. Two of these variables are considered 'independent' 
variables and one is 'dependent'. The meaning of these terms is similar to that 
used in analysis of variance. What conjoint measurement does is a little strange 
from the psychometrician's point of view, because the measurement relation is not 
defined on any of the three variables, but on all three simultaneously. Call the 
independent variables A and B, and the dependent variable Y; their levels are de-
noted a, b, and y, respectively. What is represented in conjoint measurement is the 
Cartesian product Ax B. which consists of all ordered pairs (a, b), and the relation 
that is mapped in > is the effect of these combinations on the dependent variable 
Y. Denote the levels of the independent variable A by i,j, k and the levels of the 
independent variable B by l,m,n. The idea is that, if the joint effect of (aj,6j) 
exceeds that of (a,j,bm), so that (ai ; &;) >; (a,j,bm), where >r again is a qualitative 
relation and not a quantitative one, then the combination (a»,6j) must be assigned 
a higher number than the combination (a_,, bm). The process of quantification (i.e., 
representing qualitative relations in the real numbers) now applies to all three vari-
ables simultaneously, but it does not require an empirical concatenation operation. 
What happens is that the variables A, B, and Y are scaled at once through a quan-
titative representation of the trade-off between A and B in producing Y (Narens & 
Luce, 1986). The representation theorem for conjoint measurement axiomatically 
states the conditions under which this can be done. It turns out that the possibility 
of constructing a homomorphism hinges on the possibility to find a representation 
that is additive in the effects of the independent variables on the dependent vari-
able. If this is the case, then mappings ƒ and g of the independent variables A 
and B into the real numbers can be found so that (aj,6/) >z (dj,bm) if and only 
if f(a,i) + g(bi) > f((ij) + g{bm). The representational structure for the Cartesian 
product terms (a, b) is for any combination of levels i of A and / of B then given 
by <fi(a,i,bi) = f((H) + g(bi). The representation is on an interval scale, because the 
structure is invariant under linear transformations of the assigned scale values. 

Conjoint measurement thus constructs a mapping of an empirical relational 
system Ö =• (A x B, >:) into 1Z = (Re, >). No empirical concatenation operation is 
in sight, as is reflected by the omission of © in the notation, although adding scale 
values is meaningful. It is possible to imagine a kind of concatenation operation that 
relates the system to extensive measurement structures, but this concatenation is 
not empirical. In the literature, this is called an 'induced' concatenation operation 
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(Narens & Luce. 1986). Because this is not an empirical concatenation operation, 
however, the operation cannot be said to be represented in the way this can be said 
of extensive measurement. 

It is, however, important to consider why conjoint measurement gives an interval 
scale, i.e., what the meaning of the measurement unit is. This comes down to the 
question what it is, exactly, that is being measured. Basically, what is represented 
in the model is a trade-off. The meaning of the measurement unit is in terms of 
this trade-off. For instance, suppose that we have a given combination (a*, 6;), and 
increase the level of A from otj to aj, thereby constructing a new combination (a,j,bi) 
that is >- to the original one. The conjoint model then says by how many units 
the factor B has to be decreased in order to produce a new combination (aj. bk) 
that is not noticeably different from (i.e., that is both >z and ^ to) the original 
combination (OJ,6J). Thus, the model states how effects resulting from variations 
in A can be undone by variations in B, and vice versa. The measurement unit is 
explicitly defined in terms of this trade-off. The reason for this is that any two 
distances a, — aj and aj — a^ on the factor A are defined to be equal if they can 
be matched by the same distance bi — bk on the factor B. The measurement unit 
on the factor A is thus defined as the change in A necessary to match an arbitrary 
change on the factor B, and the measurement unit on the factor B is defined as the 
change in B necessary to match an arbitrary change in the factor A. This is the 
reason why it is crucial to have two factors; one cannot define a unit of measurement 
on one factor without reference to the other. Because the method does not match 
levels in A by levels in B, but rather differences between levels of A by differences 
in levels of B, it can be expected to yield an interval scale. This is formally the case 
because linear transformations on the scale values assigned to the levels of either of 
the factors preserve the representation. 

4.2.2 The empirical stance 
Representational measurement is, as has been stated before, concerned with for-
mulating the conditions that must be fulfilled in order to be able to construct a 
representation. These conditions, which are formulated as axioms, thus describe 
the relations that must hold in the data at hand for a representation to be possible. 
They are of an empirical nature; in Krantz. Luce, Suppes, & Tversky (1971) they 
are even called empirical laws. For extensive measurement, the axioms involved 
are rather simple (see Narens & Luce, 1986, for a lucid description). For conjoint 
measurement, they are more complicated. Basically, if one knew a priori that the 
effects of the independent variables were additive, there would be no need for the 
specification of the axioms involved, and an additive representation could be readily 
constructed. The strategy of representationalism, however, is not to posit variables 
and relations between them in reality and to look at whether the data structure is 
more or less consistent with these (i.e., the model fitting approach as used in latent 
variable modeling). It always starts with the data, never with the metaphysics. 
So, the axioms of conjoint measurement describe characteristics that the data must 
exhibit for us to be able to construct an additive representation. 

As always, what we start with is a set of purely qualitative relations. In this 
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case, however, the elements on which these relations are defined are the combina-
tions (a,b). These combinations are assumed to be ordered. This ordering is in a 
sense 'induced' by Y. For example, suppose that a subject must judge, for a tone 
generated by a given combination (a, b) of intensity (A) and frequency (B) whether 
its loudness (Y) noticeably exceeds (>;) that of a tone generated by a different 
combination. The first axiom of conjoint measurement states that the ordering so 
produced must be a weak order. A weak order is an order that is transitive and 
connected. Transitivity means that for each combination of levels i,j, k of A and 
/ ,m ,n of B, if (a,.6/) y (a_,-,6m) and (a,j,bm) h {ak,bn), then (aj,6j) h (ak,bn). 
Connectedness means that each comparison is made, and for all comparisons either 
i<H,bi) h (aj,bm), or (a,j,bm) h (<H,h), or both. 

The second axiom of conjoint measurement is called independence. It states 
that the ordering of the levels in A, which is induced by the ordering in Y, must 
be unaffected by which particular value of B is chosen to assess this ordering; 
the converse must also hold. So, if we assess the ordering of perceived loudness 
as produced by varying levels of intensity, we have to do this while holding the 
frequency of the presented tones constant. The independence condition says that it 
must not make a difference for the ordering whether we set the frequency at 100Hz 
or at 1000Hz. Higher intensities must in either case produce either an unnoticeable 
difference or a higher perceived loudness. This means that, if there is an interaction 
effect of the independent variables, no additive conjoint measurement representation 
can be formed. However, the restriction this poses is less serious than it may 
seem. This is because the original observations on the Y variable are assumed 
to be merely ordinal. Thus, any monotonie, order-preserving transformation on 
these observations is permissible. The restriction posed is therefore relatively mild: 
There must exist a monotonie transformation of the dependent variable that renders 
the effects of the independent variables additive. It is possible to remove a wide 
class of interaction effects by transforming the dependent variable. A real problem 
occurs, however, in the presence of disordinal interactions, i.e., when effects 'cross'. 
This would be the case, for example, if for tones with a frequency below 1000Hz 
a higher amplitude would produce a higher perceived loudness, but for tones with 
a frequency above 1000Hz, a higher amplitude would produce a lower perceived 
loudness. If this happens, the very ordering on A, as induced by the ordering on Y. 
depends on the selected level of B, and no additive representation will be possible. 

The independence condition allows for the independent ordering of the factors 
A and B in terms of increasing values of Y. On the basis of this ordering, we 
can represent the structure in a table like Table 1, which contains three levels for 
each factor. Factor A is represented as increasing'in F from left to right; factor B 
is represented as increasing from top to bottom. The entries in the table are the 
(monotonically transformed) values y as corresponding to each combination (a, b). 
Because of the independence condition, the entries are increasing both in the rows 
and in the columns of the table. 
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Table 4.1. The combinations (a,b) are ascending both 
in rows (left to right) and columns (top to bottom). 
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The third axiom of conjoint measurement is called double cancellation and refers 
to relations between the diagonals of the table. It is basically a consequence of addi-
tivity, and invoked because the axiom of monotonicity does not, by itself, guarantee 
additivity in the two-factor case (Krantz, Luce, Suppes, & Tversky, 1971, p. 250). 
Additivity requires that any entry (a, 6) can be represented by the additive function 
f (a) + g(b). Therefore, an entry, say, (a2.bi), must be >z (yield a greater amount 
of Y) to another entry, say, (01,62), if and only if f(a2) + g(h) > f(ai) + g(b2). 
Suppose that this is the case, and that it is also the case that (03,62) h (02,63). 
Then we have the two inequalities 

f(a2)+g(bi)>f(a1)+g(b2) (4.1) 

and 
f(a3)+g(b2)>j(a2)+g(b3). (4.2) 

If the effects of the factors are additive, it follows that 

f(a2) + g(h) + f(a3) + g(b2) > f{ax) + g(b2) + f(a2) + g(b3), (4.3) 

which implies the new inequality 

f(a3)+g(h)>f(a1)+g(b3). (4.4) 

This is the condition of double cancellation ('cancellation', because of the terms 
cancelling out in the last step of the derivation, and 'double' because there are two 
antecedent inequalities). The double cancellation axiom must hold for all 3 x 3 
submatrices of the larger matrix defined over all levels of A and B. 

The final axiom needed is called the Archimedean axiom. This axiom is also 
commonly used in extensive measurement, where it asserts, for instance, that no 
object is infinitely larger than any other object. In the present context, the axiom 
states that no difference in A produces an infinitely larger change in Y than any 
other difference in A, and that no difference in B produces an infinitely larger 
change than any other difference in B. This axiom is technical in nature, and I will 
neglect in the following. 

If the data satisfy the above axioms, then an additive representation can be 
constructed that preserves all of the relevant relations in the data. Conjoint mea-
surement theory shows that fundamental measurement does not require a concate-
nation operation, and in doing so provides a justification for intensive measurement 
that is lacking in Campbell's account. It also provides psychology with a system for 
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measurement that is on equal footing with the ones in physics. For the way subjec-
tive loudness could be measured and quantified is exactly the same way in which 
density can be measured and quantified. The representationalists thus showed that 
the conclusion reached by the commission installed by the British Association for 
the Advancement of Science was false: Fundamental measurement is, in principle, 
possible in psychology. 

4.2.3 The ontological stance 
Representationalism is the only theory of measurement with an explicit ontological 
status for its central concept. Scales are representations of observed relations and 
therefore they are constructions. Scales do not 'underlie' the observed relations, and 
much less are they causally active in producing them. The recipe for scale construc-
tion is crisp and clean, and devoid of any metaphysical assumptions whatsoever. 
Parsimonious and powerful, representationalism is the dream of every empiricist 
philosopher and scientist alike. We can simply start by observing relations between 
objects with the unaided eye (Van Fraassen, 1980), and show how theoretical terms 
like 'length', 'distance', or 'subjective loudness' can be constructed and quantified 
based on these relations. There is little one can say about this except that it is 
probably the most comprehensive and adequate empiricist theory of measurement 
that could possibly be given. Upon closer consideration, however, it appears to 
be rather unclear what exactly constitutes the relation between the logical struc-
ture of representationalism and the actual measurement process. One option is to 
interpret the axiomatic theory as providing us with a definition of measurement. 
This would suggest that the theory provides necessary and sufficient, or at the very 
least necessary, conditions for a procedure to satisfy in order to be covered by the 
definition of measurement. This interpretation will be argued to be problematic; 
if the theory gave sufficient conditions, then it would include absurd cases, and if 
it gave necessary conditions, many recognized instances of measurement would not 
be covered by the definition because representationalism cannot deal with error. 
Alternatively, one could interpret the theory as a prescriptive theory that shows 
how we should go about constructing scales in psychology. This, however, does 
not work either. Contrary to suggestive wordings like 'not noticeably longer than', 
representationalism does not describe how fallible human beings such as ourselves 
could construct scales. It describes, at best, how a Laplacean demon - a rational 
being with an infinite amount of time, an infinitely large brain, and a capacity for 
errorless observation - could construct scales on the basis of observable qualitative 
relations. Because we are not such beings, the representationalist enterprise can-
not be seen as a serious proposal for constructing measurements. Therefore, the 
prescriptive reading of the theory is not justified. 

Representation and measurement 

The problem with the view that representationalism gives a definition of measure-
ment concerns its central tenet, namely that measurement is essentially about rep-
resentation. While there is a nontrivial sense in which this is true, namely, we do 
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aim to construct a numerical system that reflects certain systematic relations in the 
world, there is also a nontrivial sense in which it is false. The sense in which it is 
false is that measurement is not exclusively representational. In particular, the fact 
that a representation can be constructed cannot be a sufficient condition in any 
sensible definition of measurement. 

This is evident from the fact that we can construct situations where we have 
homomorphic representations which are not measurements in any meaningful sense 
of the word. Consider, for example, the Guttman model, which is a deterministic 
item response model to which the axiomatic theory applies. The Guttman model 
is generally seen as a model for ordinal measurement, but its mathematical require-
ments by themselves do not warrant this interpretation. To see this, consider the 
following four items: 

1. I have parents (yes: 1, no: 0) 
2. I have no beard (yes: 1. no: 0) 
3. I menstruate (yes: 1, no: 0) 
4. I have given birth to children (yes: 1, no: 0) 

Suppose that we administered these items to a group of people. Obviously, we 
would get a triangulated structure that looks as follows: 

m 1 
1 
1 
1 
1 

Item 2 
0 
1 
1 
1 

Item 3 
0 
0 
1 
1 

Item 4 
0 
0 
0 
1 

Sumscore 
1 
2 
3 
4 

This triangulated structure is a necessary and sufficient condition for construct-
ing a Guttman scale. The reason that we get this structure, of course, is simply 
that we have constructed inclusive subclasses of people. People with sumscore 1 
are men with a beard; people with sumscore 2 are non-menstruating women and 
men without a beard, people with sumscore 3 are women without children, and 
people with sumscore 4 are women with children. Now, if measurement were noth-
ing more than homomorphic representation of empirically observed relations, and 
the Guttman model produces an ordinal scale, then we would be forced to conclude 
that we have ordinally measured something here. This does not seem to be the 
case. However, the example surely provides a case of homomorphic representation. 
Therefore, representation and measurement are not the same. That a representation 
can be constructed is not a sufficient condition for obtaining measurements. 

This is not surprising because a representation is a purely formal concept, while 
the question whether measurement has taken place is not a purely formal one, 
as is evident from the literature on validity (Cronbach & Meehl, 1955; Messick, 
1989). Thus, to speak of measurement requires extending the formal framework 
with a substantive interpretation. And this interpretation cannot, in principle, be 
given by the formal model itself. It seems to me perfectly in order to say that a 
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representation may be constructed in cases where nothing is measured. Now this is 
not an argument against the representational view in general; it merely says that 
there is more to measurement that representation alone, and that the ability to 
construct a representation cannot be a sufficient condition for measurement. 

The problem of error 

While it is quite clear that representationalism cannot give sufficient conditions for 
measurement, we could at least imagine that the theory gives necessary conditions 
for measurement, as is suggested, for example, by Michell (1990; 1999). This, 
however, is also difficult because the theory has a hard time dealing with the problem 
of error. If the possibility to construct a homomorphic representation were to be a 
necessary condition for measurement, this entails that we should be able to gather 
data that fit the measurement model perfectly. This is because, strictly speaking, 
models like the conjoint model are refuted by a single violation of the axioms. For 
example, if there is a single triple of observations where transitivity is violated, 
or a single 3 x 3 submatrix that violates double cancellation, the model is falsified, 
because no homomorphic representation will be possible. Since we can safely assume 
that we will not succeed in getting error-free data - certainly not in psychology 
we must choose between two conclusions: Either measurement is impossible, or it is 
not necessary to construct a perfect homomorphic representation. If we accept the 
former, we may just as well stop the discussion right now. If we accept the latter, 
then we have to invent a way to deal with error. 

The return of Mr. Brown The natural means of introducing a theory of error 
would be to construct a statistical formulation of representational measurement 
theory. In such a theory, one would have to introduce parameters to represent the 
true values of the objects. One way to do this would be by replacing sentences like 
'a •< b if and only if <p(a) < <fi(b)' with sentences of the form 'ra ^ Tb if and only 
if 4>{a) < </>(&)'. Here, the r variable could serve the function of denoting the true 
value of the objects on some instrument used to make the comparison between a 
and b. This instrument could be a particular meter stick, but it could also be an 
item in a psychological test. Scheiblechner (1999) who follows this line of reasoning, 
calls the indirect comparison of objects, through their true scores on an instrument, 
an instrumental comparison (p.299). The so constructed model allows for error 
because it may be the case that a particular observer judges that a <b while it is 
actually the case that Ta> T^-

The problem, of course, is that the very introduction of error requires an account 
of what the true values are. The common approach to this problem in statistics is by 
introducing the idea that the observed values are realizations of a random variable. 
Conceiving of the measurement apparatus as yielding a value x for each object, we 
could implement this idea by interpreting x as a realization of the random variable 
X. We may then introduce the assumption that £(Xa) = TQ, analogous to the 
way this is done in classical test theory. The interpretation of the so constructed 
sentence in terms of length would be 'the expected centimeter reading of a is not 
noticeably larger than the expected centimeter reading of b if and only if the number 
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assigned to a is smaller than the number assigned to b'. Because nobody can observe 
the expected values, we should delete the word 'noticeably'. This implies that we 
should also replace the symbol ^ , which stands for 'not noticeably longer than' 
by the symbol < which means 'has a lower expected centimeter reading than'1. 
That is, the instrumental comparison can only be made by examining relations 
between expected values, which are by necessity numerical. So, an interesting shift 
takes place here: While the fundamental measurement model aims to construct 
quantitative metrics from qualitative observations, the instrumental comparison 
introduces a kind of quantitative metric directly at the level of the comparisons 
made. 

Expected values are not observable, and the fact that we are introducing rela-
tions between unobservables at such a fundamental level in the construction of the 
model has far-reaching consequences. In effect, we are now already working with 
a true score model. And if we aim to construct a measurement instrument that 
measures a single attribute with a number of observed variables, we will build a 
structure that strongly resembles a latent variable model. Considered in terms of 
a psychological test consisting of a number of items, this would work as follows. 
Interpreting the numerical assignment 0 as a latent variable (now interpreted as a 
rescaling of the true score), which represents an item x subject Cartesian product 
with an ordering induced (in both items and subjects) by the r variable, we can 
construct an additive conjoint representation if the item and subject effects are in-
dependent, additive, and satisfy the double cancellation axiom with respect to the 
values of r (Scheiblechner, 1999). An example of a model that has these properties 
is the Rasch model (Rasch, 1960). Thus, this statistical decomposition of observed 
values, in true and error components, leads directly to the class of additive Item 
Response Theory models. I will have more to say about this relation in Chapter 5. 

This approach to the problem of error is useful because it shows that the di-
vide between representationalism and latent variable theory is formally speaking 
a fine line. From a philosophical viewpoint, however, crossing this line has seri-
ous consequences; in effect, the main tenets of representationalism are lost in the 
present approach. The first problem is that we have assumed the existence of an 
instrument that gives the measurements to apply the expectation operator to. The 
present approach merely allows for the construction of a ruler with equal intervals 
on the basis of comparisons made by using a ruler with unequal intervals. It can be 
used to show how a scale can be linearized, analogous to the way that Rasch models 
linearize sumscores by appropriately stretching the far ends of the scale. However, 
representationalism is not served by assuming, a priori, that a ruler exists. For the 
theory is aimed at showing how a ruler with equal intervals could be constructed on 
the basis of direct qualitative comparisons with respect to the variable in question 

1 While probably not intended in this manner, the fact that Scheiblechner (1999) retains the 
•< relation in the introduction of his ADISOP models is slightly misleading. The relation is 
interpreted as a 'stochastic dominance' relation (p. 299), where a ;< b means, for example, that 
subject a has a lower expected value on a given item than subject b. The notation is adequate in 
that the denoted relation is only taken to establish an ordering, and in this sense is qualitative, 
but it does certainly not have the connotation of noticeability or observability, a connotation that 
such relations generally do have in the representational approach. 
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- whether it is length, density, or subjective loudness - and not at showing how 
length can be measured given the fact that a ruler already exists. More importantly, 
however, the very construction of a ruler is frustrated in the present approach. The 
reason for this is that the construction process would have to be carried out though 
the evaluation of stochastic dominance relations of the above type. These relations 
are clearly unobservable. Moreover, expectations cannot be empirically concate-
nated in principle. As a result, even the possibility of extensive measurement now 
vanishes. The third and most troubling consequence of this move is that in most 
cases of measurement, but certainly in psychology, we will encounter serious prob-
lems in the interpretation of the expected values involved. In fact, we are likely to 
be forced to interpret the expected values in a propensity sense. So we can now hear 
Mr. Brown knocking on the back door; and the representationalist certainly would 
not want to let him in. It thus seems that, in this approach, we are quickly losing 
the gist of the representationalist theory. For we are not building homomorphic 
representations of observable objects and qualitative observable relations between 
them; we are building isomorphic representations of unobservable true scores and 
equally unobservable relations between them. 

Introducing the Laplacean demon A second way to introduce a concept of error 
would be to introduce true relations between objects, rather than to assume true 
scores for the objects. This could be done by replacing sentences like 'a -< b if and 
only if 4>{a) < 4>{b)7 with sentences of the form 'a ^true b if and only if 0(a) < 
4>(b)\ That this will not work is obvious from the fact that the values <fi are, 
in representationalism. constructed from the data and not hypothesized a priori. 
Because we cannot observe the true relations, we cannot construct these values and 
the above formulation is nonsensical. It would be an idea, however, to take the 
idealization one step further and to introduce true values for the 4> involved. These 
values are not to be interpreted as existing independently of the relations they 
figure in, as in the introduction of expected values above. Rather, they should be 
seen as the values that would be constructed if we could observe the true relations 
between objects. Their status as true values is thus derived from positing true 
relations, rather than the other way around. Also, the relation ^ does not have to 
be interpreted as a relation between propensities. It can be taken to be a completely 
deterministic relation between objects. So now we could get 'a -<true b if and only 
if 4>true{a) < 4>true(b)'. Interpreted in terms of length, this sentence says that a is 
truly not noticeably longer than 6 if and only if the number, that would be assigned 
to a if we could observe the true relations, is smaller than or equal to the number, 
that would be assigned to fr, if we could observe the true relations. We thus retain 
the construction of quantitative scales out of qualitative relations, and refrain from 
introducing relations between unobservables in the definitions. The only problem 
is that the relation ^ has no natural interpretation anymore. For what does 'truly 
not noticeably longer than' mean? Does it mean that nobody could, in principle, 
notice that a is longer than b if a is actually longer than 6? No, because if this 
were the case, we could just use fundamental measurement theory as it stands; for 
there would be no error, and consequently there would be no need for the present 
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exercise. Does it then mean that no perfect observer could notice that a is longer 
than b if a is truly longer than 6? Possibly, but who is the perfect observer? A 
Laplacean demon? 

The problem we are facing here is clearly caused by the word 'noticeably'. The 
use of this term suggests that somebody is actually noticing relations between ob-
jects, and the judgments of this anonymous somebody would produce transitive and 
ordered data when measuring attributes that sustain measurement. Upon closer in-
spection, the identity of this anonymous observer is mysterious. The interpretation 
of the word 'noticeable' is unproblematic for an empiricist reading of the theory as 
long as we interpret it as 'noticeable with the unaided eye', that is, noticeable in 
practice. Because in this interpretation the theory is unable to deal with error, we 
have to move beyond the practically feasible observational powers of human beings 
and construct the relations as noticeable for somebody with observational powers 
that markedly exceed our own. This is necessary because the introduction of error 
means that we need to be able to say that we are wrong, and being wrong is always 
relative to being right. That is, error is a deviation, and the natural interpretation 
of the concept is that it is a deviation from a standard. In a theory that works 
its way up from qualitative, noticeable relations, we need somebody to notice the 
correct relations, which could function as such a standard. And if it cannot be us, 
then it must be a demon with infallible observational powers. Hence the need to 
introduce a Laplacean demon. 

Now, if we want to pursue this line of reasoning without introducing propensities, 
expected values, and latent variables into reality, it is obvious that we must limit 
the relation ^ to be a relation between objects, and not between true scores. If 
we do not do this, then we must again introduce expected values and relations 
between them for the demon to notice. This requires that such values and relations 
exist in reality, so that we would again be introducing the metaphysics we sought 
to evade; in effect, we would arrive at the same conception of measurement as in 
the previous attempt to deal with error. Dismissing relations between propensities, 
however, has a very important consequence: It excludes any model that posits 
relations between expected values. Thus, in this interpretation, additive models 
like the Rasch model (1960) and the ADISOP models (Scheiblechner, 1999) are not 
representational models because they posit relations between propensities. 

Perhaps the representationalist would not object to the exclusion of additive 
IRT models. One rarely encounters a reference to these models in the representa-
tionalist literature, and I would indeed suspect that representationalists reject such 
models because of the fact that they introduce too much metaphysics. The advo-
cates of additive IRT models tend to flirt with fundamental measurement theory 
(e.g., Wright, 1997: Bond & Fox, 2001), but the reverse is definitely not the case. 
However, even the pet examples of representationalism would have difficulty sur-
viving the demands posited in the approach we are presently considering. Consider 
the measurement of subjective loudness. What would we have to posit in order to 
be able to say that, while subject i did not notice the combination (a*, &/) to be ^ 
to the combination (aj,bk), he erred in this response? Or to say that, while i said 
he preferred stimulus j to stimulus k, he was misjudging his own preferences? The 
problem here is, of course, that the word 'noticeable' is, in these cases, intended as 
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'noticeable for subject ï and not as 'noticeable for a Laplacean demon'. The very-
subjective nature of the comparisons on which fundamental measurement operates 
in these cases precludes the introduction of error. For this requires us to say thati is 
objectively wrong concerning his subjective state of mind. This does not seem to go 
in the right direction, whether we consider the situation from the representational 
point of view or otherwise. Thus, in this approach few of the accomplishments 
of representational theory are preserved: The additive IRT models are excluded 
from consideration, and subjective scales for loudness, preference, etc., are deprived 
of their intended interpretation. In fact, the only examples of measurement that 
would sit well with this approach are examples from physics. The measurement 
of length, mass, and density do sustain the idea that they represent deterministic 
relations between objects as they could be observed by a Laplacean demon. But 
the measurement of psychological variables is not satisfactorily incorporated in this 
approach. 

Reconceptualizing error A final possibility to deal with imperfect observations is 
not to view them as error at all. Whatever the ontological status of error may be, in 
the final analysis the only epistemological criterion to detect error is as a deviation 
from a theoretical model. Instead of laying the blame on the observations, so to 
speak, one may attribute the deviations to a failure of the model. In such a view, 
the model is not interpreted as aspiring truth, but as an approximation. One may 
then choose to minimize the distance between, for instance, the conjoint represen-
tation and the data matrix. This can be done by constructing a stress measure 
for this distance, and then minimizing the stress of the model with respect to the 
data. Interpreted in this manner, representational measurement theory would be a 
(possibly multidimensional) scaling technique, because error is not conceptualized 
as inherent to the variables observed, but as the distance between the data matrix 
and the representation. (In multidimensional scaling it is nonsensical to ask what 
the 'true' representation is, in contrast to latent variable models, where the quest for 
the true model is often deemed very important.) Representationalism does have a 
structure that is similar to scaling techniques (Coombs, 1964), so that this approach 
would seem a natural way for representationalism to deal with error. However, in 
this approach the main idea of representational measurement theory is also lost, 
because whatever the relation between the data and the representation may be, it 
will not be a homomorphic mapping. 

So. it seems that representational theory is stuck between a rock and a hard 
place: It must either say that no psychological set of data satisfies the axioms, 
thereby forcing the conclusion that psychological measurement is impossible after 
all. or it must introduce a concept of error. The three ways of doing this, as dis-
cussed above, are not satisfactory. In the first attempt, we were forced to introduce 
expected values for the objects. This not only requires the existence of an instru-
ment yielding values to apply the expectation operator to. but must also posit 
probabilities that can only be interpreted as propensities. In effect, the structure 
we end up with strongly resembles a latent variable model, and the homomorphism 
constructed involves unobservable relations between unobservable true scores. This 
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can hardly be considered to maintain the spirit of representationalism. The sec-
ond attempt introduced true qualitative relations between the objects, and derived 
true values only in virtue of these relations. However, in this interpretation we 
must hypothesize a supernatural being to observe the true relations. Although 
this conception is perhaps closest in spirit to the formulation of representational 
measurement, it cannot be considered a case of progress in terms of keeping a 
low metaphysical profile. Finally, if we choose a more pragmatic approach, and 
simply minimize the distance between the data and the representation, we refrain 
from introducing metaphysics, but at the same time lose another central idea in 
representationalism, which is that we are constructing a homomorphic mapping of 
objects into the real numbers. Thus, the inability to deal with error seems to be 
deeply entrenched in the structure of representationalism. Attempts to incorporate 
an error structure seem to invariably destroy one or another of the tenets of the 
theory. This does not, of course, imply that the formal structure of representational 
theory could not be applied to stochastic systems. It merely means that to do so 
requires giving up the empiricist connotation of the theory. 

Representationalism as rational reconstruction 

Representationalism does not state sufficient conditions for a definition of measure-
ment, because there are representations that are not measurements. Neither does 
it provide necessary conditions, because the conditions as stated will be false in the 
presence of error, and it is hard or impossible to modify the theory to bypass this 
problem. We cannot hold, therefore, that representationalism defines measurement 
in general. We may, at best, hold that it states necessary conditions for perfectly 
reliable (i.e., deterministic, errorless) measurement, which would be a definition 
without much practical use - particularly in psychology. If it does not offer a def-
inition of measurement, however, what is the status of representationalism? What 
is its relation to actual measurement? 

First, we must note that representational theory certainly elucidates the struc-
ture of measurement. Especially in physics, the theory has greatly clarified the 
nature of various measurement techniques by concentrating on the relation between 
a empirical relational system and a numerical relational system. Second, it is clear 
that the theory seeks to offer logical underpinnings of scale construction. In the ex-
tensive case, the logical requirements are connected to the process of measurement 
by relating the concatenation operation to the numerical operation of addition. This 
is a particularly interesting case because it seems to show what it 'actually is' that 
carpenters and tradespeople have been doing all along. The theory gives a formal 
structure, and it would seem that this formal structure is in some way 'instantiated' 
in the behavior of cashiers and scientists alike. This suggests that the theory gives 
a reconstruction of the measurement process. 

Of course, such a reconstruction should definitely not be taken to be an actual 
reconstruction of the historical process that led to measurement as we now know it-
Such an interpretation of the approach would be vulnerable to the same objection 
that, in the long run, proved fatal to the idea that logical positivism described the 
actual structure of theory development: It simply does not work that way. For 
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instance, in his historical overview of social science measurement, Wright (1997) 
quotes a passage from the Magna Carta, dating from 1215, in which King John of 
England declared: 

"There shall be one measure of wine throughout our kingdom, and one of ale, and one 
measure of corn, to wit, the London quarter, and one breadth of cloth, to wit, two ells 
within the selvages. As with measures so shall it be with weights." 

The quotation illustrates the obvious but interesting fact that King John, who 
clearly understood the basic principles of measurement and their importance quite 
well, is nevertheless unlikely to have thought of measurement as the homomor-
phic mapping of an empirical relational system into a numerical one. Likewise, 
carpenters, tradespeople, and scientists use the principles of measurement without 
apparent awareness of the higher mathematics they are involved in. So, unless we 
assume that Freud's unconscious not only exists, but actually has a serious expertise 
in set theory, it would surely be outrageous to say that representational measure-
ment theory is a theory of how measurement is carried out in practice. King John 
knew nothing about set theory, and still he believed that measurement was impor-
tant enough to include a passage about it in the Magna Carta. The Egyptians 
certainly knew how to measure the bricks they used in constructing pyramids, but 
they did not even have the number zero, let alone the real number system. Scien-
tists use measurement procedures all the time, but they cannot explain to you how 
representational measurement theory works unless they have studied it. Clearly, 
the reconstruction given is not a reconstruction of the historical development of 
measurement, and neither can it be interpreted as a psychological description of 
the scientist carrying out the measurement procedure. 

The question that forces itself upon us then becomes: If representationalism 
offers a reconstruction, then what is it reconstructing? Exactly the same problem 
was faced by the logical positivists, who described the structure of scientific theo-
ries in a way that was quickly realized to be inadequate as an actual description. 
Reichenbach (1938) circumvented this problem by stating that he was giving a ra-
tional reconstruction of scientific theories. Such a conceptualization seems to fit 
representationalism quite nicely. In accordance with the findings in the previous 
section, we may then interpret the theory not as showing how a scale can be con-
structed, but how a scale could be constructed by a Laplacean demon, i.e., a being 
equipped with powers that enable him to make errorless observations of qualitative 
relations between objects. I think this is the best possible interpretation of the 
theory. Representationalism offers a theory of homomorphisms that certainly has 
intuitive appeal in its mathematical elegance and parsimony. The interpretation 
in terms of rational reconstruction does nothing to devaluate the theory at this 
level. However, the interpretation also makes clear that representationalism is not 
a theory about how the concept of measurement developed, and it is not a theory 
of what scientists do. for the simple reason that they are not Laplacean demons. 
While this does not diminish the importance of the analysis for understanding mea-
surement structures, it does raise doubts with respect to the prescriptive force of 
representationalism. 
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Reconstruction does not entail prescription 

One of the most serious mistakes one can make when thinking about any research 
topic is the following: in a certain population, we have observed that elements with 
property x tend to have property y. so if we equip elements lacking property x 
with that property, then they will also develop property y. Philosophers of science 
who view it as their mission to equip scientists with prescriptive criteria of theory 
development, model selection, or scale construction, commonly commit this fallacy. 
For example, they think that, because successful scientific theories have property 
x, we can construct successful theories by forming theories that have property x. 

So. because we observe that Copernican astronomy is more parsimonious and 
yet equally adequate in prediction as the Ptolemean system, we should select mod-
els in psychology on the basis of parsimony and predictive adequacy - regardless 
of whether such a strategy has been shown to yield better theories in psychology 
(it has not). Because we observe that highly successful theories in physics, like 
Newtonian mechanics and the theory of relativity, are falsifiable, we should con-
struct falsifiable theories in psychology, and psychology will automatically become 
a serious scientific discipline - regardless of whether it makes any sense to construct 
falsifiable theories at the present stage of theory formation in psychology. And so 
it is with the advocates of fundamental measurement: Measurement has been very 
successful in physics, where it allegedly obeys the structure of fundamental mea-
surement theory, so if we construct psychological measures based on this theory, 
then psychology will finally become the long sought quantitative science we have all 
been dreaming of. This kind of science fiction is continually being propagated by 
the advocates of Rasch models (Wright, 1997; Bond & Fox, 2001), fed by the oth-
erwise admirable theoretical work of Michell (1990: 1999. 2000), and has led Kline 
(1998) to adopt the mysterious view that psychology cannot be scientific without 
fundamental measurement. 

This puts the horse behind the cart. We have seen that fundamental measure-
ment theory cannot be interpreted as more than a rational reconstruction of the 
measurement process. This does not devaluate the theoretical insights it provides, 
but it is important to keep in mind that reconstruction does not entail prescription. 
One should remember that fundamental measurement theory is entirely post-hoc. 
It has not helped to construct measurements of length or mass; it has not even 
helped to construct measurements of conjoint concepts like force or density. It has 
elucidated the structure of such cases of measurement. But it is highly questionable, 
given its deterministic nature, whether the theory could have been of any use in con-
structing these measures in the first place. Probably, the clean logic of the theory 
would have been an obstacle rather than an aid to the development of measurement 
procedures - a process that is messy, inexact, full of spurious results, packed with 
error variance, and that more often than not requires decisions to be made on the 
basis of intuition than on the basis of logic. It is a fallacy to think that, because 
established forms of measurement allow for a philosophical reconstruction in terms 
of model x, all measurements should be constructed to obey the prescriptions of 
model x - regardless of whether model a; is a fundamental measurement model, a 
latent variable model, a generalizability theory model, or some other technique. 
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The reason why fundamental measurement theory cannot be a prescriptive 
methodological framework has to do with its particular deterministic structure, 
but much more with the fact that it is just a model. One should be weary of mod-
els that are propagated as prescriptive frameworks in a universal sense, because 
whether or not a model is adequate in a given situation strongly depends on the 
substantive considerations that are relevant in that particular situation. Additivity, 
for example, is desirable because it is simple, but it is only desirable if substantive 
theory suggests that additivity should hold. Now, if we had different kinds of me-
ter sticks that produced crossing interactions, we would certainly be surprised: It 
would be strange if on some meter sticks longer things had a higher expected value 
than shorter things, and on other meter sticks longer things had a lower expected 
value than shorter things. Yet, this is what the presence of crossing interactions 
(as present in factor models with unequal factor loadings as well as in Birnbaum 
models) signifies. On the other hand, if we asked people a number of questions to 
measure their height, we might certainly encounter such situations. For instance, 
the item "I can touch the top of a doorpost with my hands" can reasonably be con-
sidered to measure bodily height, be it indirectly. It will show a quite steep curve 
as a function of height, jumping from "no" to "yes" at about 1.75 meters. Coding 
the item as "yes":l and "no":0, we might imagine this item to have an expected 
value of .80 for people 1.80 meters tall, and an expected value of .20 for people 
1.70 meters tall. The item "I am pretty tall" is less direct, but may nevertheless 
be considered to validly measure the trait at hand. Because it is less direct, the 
item characteristic curve will not jump from 0 to 1 as suddenly and steeply as the 
previous item. This yields the possibility that people who are 1.70 meters tall will 
have an expected value of .30, while people who are 1.80 meters tall may have an 
expected value of .70. Thus, for people who are 1.80 meters tall, the first item is 
'easier' than the second, but for people who are 1.70 meters tall, the second item 
is easier than the first. Technically, this means that there is a crossing interaction 
between the subject and item factors, which implies that additivity is violated and 
no conjoint additive representation can be found. Does this mean we cannot use 
the two items to construct a valid measure for height? And what about items 
used to measure cognitive abilities or personality characteristics? Should we always 
demand additivity in such cases? One should be weary to draw this conclusion 
because it depends on a dogmatic view that leans towards essentialism about the 
term 'measurement'. In the absence of a rationale based on substantive, rather than 
philosophical, considerations that sustain various formal properties like additivity 
(or, for that matter, unidimensionality, measurement invariance, and the like) one 
should be very careful in propagating the universal demand for such properties. It 
amounts to pure speculation to say that constructing measures on the basis of these 
formal criteria will lead to better measurement. 

It is certainly true that many measurement practices in psychology, as well 
as models that employ continuous latent variables, assume that psychological at-
tributes are quantitative. This is a serious assumption, as has been clarified by 
Michell (1990: 1999). It is also true that finding an additive conjoint measurement 
representation, even if it is probabilistic like in the Rasch model or the ADISOP 
models discussed by Scheiblechner (1999), yields support for this assumption. But 
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it is not true that the existence of a continuous, quantitative psychological attribute 
guarantees that one can construct a psychological test for it that allows for an ad-
ditive representation. It has never been proven, and will never be proven, that 
constructing tests on the basis of this requirement will yield better tests, regardless 
of the dimension one is trying to measure or the substantive field one is working in. 

In the substantive context of psychology, we should seriously consider the possi-
bility that psychological measurement is so much more complicated than measure-
ment in physics, that it is a different ball game altogether. That is, fundamental 
measurement may be fundamentally inappropriate. Consider the simple fact that 
some questions are better asked in a dichotomous format, while some perform bet-
ter in a polytomous format, whereas still other questions are more appropriately 
put in open-ended form. Assume for a moment that the trait indicated by the 
term 'general intelligence' exists, and is quantitative. It may well be that the best 
possible test for intelligence would be composed of different item formats (in fact, 
such tests commonly are). Now how are we going to implement the constraints of 
fundamental measurement in this case? Clearly, we are not going to do this at all, 
at least not in the presently available forms of the model. 

Now one may either give up and conclude that psychology "will never be a 
science" (Kline. 1998). or one may try to accommodate for the problem, for example 
by assuming that a latent variable exists and underlies the observations, and try 
to build a model that can handle the situation. A serious attempt at doing this 
has been undertaken by Moustaki & Knott (2000), who have formulated a general 
latent variable model that allows for the use of different item formats. Probably, this 
model would be rejected by fundamental measurement theorists: No representation 
or uniqueness theorems are available for it, and I would not be surprised if it were 
proven that no appropriate representations exist at all. Therefore, the model cannot 
be said to be a measurement model in the fundamental measurement theory sense. 
But is this the constructive contribution of representationalism to the problem of 
psychological measurement? That it is impossible to measure something if it does 
not allow for a formal reconstruction in terms of representation and uniqueness 
theorems? I consider that a very unsatisfying option. It is undoubtedly the case that 
representationalism has done much to help the case of psychological measurement, 
and there may indeed be applications of the theory, in psychophysics and other basic 
areas of psychology, where it actually works. In the case of higher order constructs 
like extraversion, intelligence, and attitudes, however, the theory has not been very 
useful so far. And considerations like the above (and there are many more) suggest 
that it will not do very much in these areas. The idea that the representationalist 
strategy is required in every case of measurement may be taken to be a truism, if 
one limits the meaning of measurement to homomorphic representation. I consider 
such a limitation to be unduly restrictive. Moreover, because representationalism is 
no more than a reconstruction, the general demand for fundamental measurement 
is based on an overinterpretation of the theory. 

It seems that the advocates of a prescriptive reading of fundamental measure-
ment theory are making a serious mistake. They think that, because physical 
measurement can be reconstructed in terms of axiomatic theory, it follows that psy-
chology should construct psychological tests through the application of axiomatic 
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theory. The justification for this conviction is usually cast in terms of logical, 
philosophical, and mathematical arguments, but as it stands it is no more than 
a belief. Moreover, the arguments adduced to support it are based on the fal-
lacy that something that works in one scientific field (physics) will also work in a 
completely different field (psychology). Arguments for or against a psychological 
method, however, should be based on considerations that bear on psychology, and 
not on considerations that bear on physics. I congratulate the physicists with the 
lucky situation that the structure of the world they study is simple enough for them 
to reconstruct measurement procedures in terms of the lucid and powerful formal 
framework of fundamental measurement. However, in psychology we do not study 
stones, atoms, and quarks, but human beings. The human being is one of the most 
complex systems in the universe. Still, with respect to some psychological charac-
teristics, human beings seem to vary from one another in a systematic fashion, and 
psychological measurement procedures attempt to capture this variation. Every-
body knows that these practices are packed with assumptions, both substantial and 
auxiliary, and that the measurement outcomes they return should be interpreted 
with care. These measurement outcomes will more often than not violate the re-
quirements of fundamental measurement. But to say that this implies that they 
are not measurements at all, and that the only way to construct measurement is to 
follow the axiomatic theory, is preliminary and hinges on an essentialist philosophy 
concerning the meaning of the term 'measurement'. 

It is clear that, if one chooses to define measurement as homomorphic represen-
tation, then many assessment techniques that are commonly viewed as instances of 
measurement are not covered by this definition. So interpreted, these procedures 
do not yield measurements. If it makes the fundamental measurement theorists 
feel better, we may decide to call them 'fleasurements' instead - although I doubt 
whether that will make much of a difference. However, it is not a fact, either 
empirical, logical, mathematical, or otherwise, that measurement is homomorphic 
representation. At most, it is a convention. If we decide to designate by the term 
•cow' every animal with eight eyes, then what we commonly recognize as being a 
cow no longer is, while spiders are suddenly in the possession of cowhood. While 
this will change the meaning of the word 'cattle' as well as the size of T-bone steaks, 
this juggling around of terms will not add much to the science of biology. The same 
holds for measurement in psychology. Nothing forces a specific definition of the 
term upon us, and nothing forces us to follow a specific approach towards psy-
chological testing; certainly not when we consider the observation by Cliff (1992) 
that the axiomatic approach has not been able to produce a single striking psy-
chological example to illustrate its benefits. Thus, it would perhaps be an idea for 
the advocates of the prescriptive reading of fundamental measurement theory to 
start showing the superiority of the approach, rather than to talk about it. For 
the prescriptive reading of the theory is not founded upon a serious consideration 
of the problems inherent in psychological measurement, but rather on a mindless 
mimicking of physics. In this context, it is ironic that the theory that originated 
as a reply to the overstated conclusions of Campbell and his associates has, in the 
hands of some of the more vigorous proponents of fundamental measurement, come 
to occupy the very same position it once sought to oppose. 
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4.3 Discussion 

Representationalism offers a powerful conceptual framework for thinking about 
measurement. The focus on mapping empirical relations into a number system 
has liberated measurement theory from the demand that a concatenation operation 
must always be available, and as such it has provided a justification for moving away 
from operationalism. The logic of the theory allows one to see very clearly what 
one is assuming in different situations, and this is indeed an invaluable theoretical 
aid in model construction and evaluation. One should, however, not overinterpret 
the theory. As a formal framework, the theory can be considered adequate for its 
purpose, but as a philosophical or even prescriptive framework, it is too simplistic. 
In a philosophical interpretation, the clean logic that is the theoretical strength 
of the model quickly becomes its weakness. Representational theory has no nat-
ural means of incorporating error, and must abandon its central tenets when it is 
equipped with a method to do so. In face of this problem, a choice has to be made 
between two conclusions: Either measurement is impossible in the presence of er-
ror, or representational measurement theory is not a theory of how measurement 
is, can be, or should be carried out in practice. The first conclusion is absurd, but 
rejecting it leads immediately to the second, and this raises the question what the 
status of representationalism is. It has been argued here that representationalism 
offers a rational reconstruction of the measurement process. That is, it elucidates 
measurement procedures by recasting them in idealized logical terms, and it does 
this very well. 

Whatever the conceptual status of rational reconstruction may be, however, it 
does not have prescriptive force. Therefore, the advocates of a prescriptive reading 
of the theory are not justified in their position. In effect, they are trying to sell a 
conceptual theory of measurement as a method for test construction and analysis. 
A method, however, can only be used if applicable, and because the inability to deal 
with imperfect observations is so deeply entrenched in the structure of representa-
tional theory, its applicability in the social sciences must be considered limited. It 
seems safe to assert that, in psychology, the clean observations that representation-
alism requires will not be realized in our time, if at all. Therefore, it is unclear 
what theorists like Michell (1990; 1999; 2000) and Kline (1998) are advocating. At 
best, they must be interpreted as proposing the use of unidimensional, additive IRT 
models, because these are the only models that allow for error and bear at least 
a superficial resemblance to additive conjoint structures. So interpreted, however, 
their claims do not seem all that radical. Moreover, the step from additive to non-
additive latent variable models, while philosophically important, is a small one from 
statistical, practical, and substantive points of view. Substantive considerations do 
not generally support additivity, as is evidenced by the fact that it is easy to give 
examples of test items that violate it but still measure the same latent variable. 
Statistical considerations suggest that the odds of finding a model with perfectly 
parallel item response functions are vanishingly small, so that the demand should 
not be taken overly seriously. Practical considerations lead to the conclusion that 
it will be virtually impossible to construct a situation, where a model that satisfies 
the usual IRT assumptions (monotonically increasing item response functions, uni-
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dimensionality, and local independence) fits the data, but the correlation between 
the simple sumscore and the latent variable drops below .90, which would seem 
more than enough for the average researcher. We must therefore conclude that 
positing additivity as a universal demand is, at best, preliminary. 

Moreover, from a philosophical viewpoint, the difference between additive and 
nonadditive latent variable models seems much smaller than the difference between 
latent variable models and strict representations. A researcher working within rep-
resentationalism is not making claims with respect to the question where the data 
came from - he is merely representing the data. From this viewpoint, additivity is 
central, because a violation of additivity precludes the possibility of homomorphic 
representation using a quantitative metric. The researcher who uses latent variable 
theory is engaged in a different activity. He knows (or should know) that homomor-
phic representation is strictly taken impossible because he is modeling stochastic 
relations that are not directly observable. In order to model such relations, he posits 
the existence of a latent variable. Because he is now introducing metaphysics, he 
needs a justification for these metaphysics, and this justification will not come from 
the data or from methodology. For instance, what type of latent variable model 
to use (e.g., a class model or a trait model), or how to conceptualize the relation 
between the latent variable and the observed variables (e.g., as additive or nonad-
ditive, parametric or nonparametric), are typical examples of questions that cannot 
be answered by the data or by methodological considerations. Exactly because the 
researcher is now positing a data generating mechanism, rather than constructing 
a representation, these questions must be answered by substantive theory. For in-
stance, developmental theory suggests that conservation data (Dolan, Jansen, & 
Van der Maas, submitted) should not be modeled as originating from a continuous 
latent variable model, but from a class model where the classes correspond to dif-
ferent developmental stages. Nothing in the data themselves forces this choice; it 
may well be possible to model the data using a continuous latent space. Neither 
do there exist methodological considerations that say developmental data should 
be modeled in this particular way. Clearly, the burden of proof shifts from the 
area of logic and mathematics to the area of substantive theory, which must give a 
justification for the metaphysics introduced. 

Thus, a researcher, who conceptualizes a psychological construct as a measure-
ment scale, is ascribing a completely different theoretical status to that construct 
as compared to a researcher who conceptualizes a construct as a latent variable. 
A measurement scale is a representation of observed relations, whereas a latent 
variable model is a guess about the structure of the data generating mechanism, 
i.e., a posited probabilistic explanation of such relations. Mathematically, the rep-
resentationalist approach is as useful for studying latent variable models as for 
studying deterministic measurement structures. Its focus on mappings yields in-
teresting insights into the relations between various levels of representation, and is 
a good theoretical tool in the study of different models and the relations between 
them. This holds true for the latent variable model as it does elsewhere. These 
insights, however, have more to do with the formal logic of the theory than with its 
philosophical account of what measurement is. The philosophical account of repre-
sentationalism involves a highly restrictive empiricist point of view. It requires the 



102 Scales 

direct observation of relations among objects in every case - the conjoint structures 
included. Representationalism could be considered to play an important role in em-
piricism, because it gives an account of how we get from qualitative observations to 
quantitative theoretical terms. This avoids metaphysical speculation, because the 
observations can be conceptualized as being made with the unaided eye. However, 
if we could judge the relation "more intelligent than' directly, there would be no 
need for intelligence tests. From this point of view, the problem in psychological 
measurement is simply that the unaided eye does not work very well. It has to 
be supplemented by statistical assumptions concerning the behavior of aggregates, 
substantive hypotheses on the nature of data generating processes, and metaphysi-
cal postulates concerning the existence of propensities and latent variables. All this 
is required in order to get the endeavor off the ground in the first place. Repre-
sentationalism does not pay attention to these problems but ignores them. This is 
fine as long as the concerns of the theory are limited to formal structures, but when 
interpreted as a conceptual framework for tackling the problem of psychological 
measurement in general, or even as a prescriptive framework for scale development, 
the theory can hardly be considered adequate. Thus, although representationalism 
is very important in elucidating some of the problems in psychological measurement, 
the mathematical structure of models, and the differences between measurement in 
the natural sciences and in psychology, its importance is limited and should not be 
overstressed. 



5. RELATIONS BETWEEN THE MODELS 

Three umpires are discussing their 
mode of operation and defending 
their integrity as umpires. "I call 'em 
as I see 'em," said the first. The 
second replied, "I call 'em as they 
are." The third said, "What I call 
'em makes 'em what they are." 
- R. L. Ebel, 1956 

5.1 Introduction 

The choice between different mathematical models for psychological measurement, 
of which this book has discussed three types, involves both an ontological com-
mitment and a position concerning what one regards as measurement. The true 
score model is operationalist: It views any observed test score as a measure of a 
true score, where the true score is exhaustively defined in terms of the test score. 
The representationalist model is empiricist, but not operationalist. It views scales 
as constructed representations of the data, but it is highly restrictive in the kind 
of representation that counts as a measurement scale. The meaning of scales does 
not explicitly derive from a realist ontology regarding attributes, but neither is it 
defined in terms of a specific measurement procedure in the way the true score is. 
Latent variable models introduce an a priori hypothesis concerning the existence 
of theoretical entities. The latent variable model does not work its way up from 
the data, like representationalism, but posits an explanatory account of where the 
relations in the data came from. Thus, classical test theory is basically about the 
test scores themselves, representationalism is about the conditions that should hold 
among test and person characteristics in order to admit a representation in the 
number system, and latent variable theory is about the question where the test 
scores came from. 

However, in spite of the fact that such philosophical differences between the 
approaches exist, they are also related in important ways. At one level, the relations 
between the models are clear. This is the level of syntax. Mathematically, it has 
been known for quite some time that strong relations exist between true scores and 
latent variables (Lord & Novick, 1968; Jöreskog, 1971; Hambleton & Swaminathan. 
1985). It has also been observed that special cases of latent variable models bear a 
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strong relation to specific versions of the representationalist model (Brogden, 1977; 
Fischer. 1995; Perline. Wright, & Wainer. 1978: Roskam, 1984; Scheiblechner. 1999). 
Such relations also exist between classical test theory and representationalism, if the 
classical test model is extended with the appropriate assumptions, as was already 
suggested by Lord & Novick (1968, Ch. 1) and is illustrated below. 

Thus, mathematically speaking, the models are strongly related, and sometimes 
a special case of one model is also a special case of another model. A question 
that has, however, been largely neglected is what kind of interpretation has to be 
given to the concepts in these models in order to maintain their interrelatedness 
at a semantic level. And an even more interesting question that has, to the best 
of my knowledge, never been addressed is the question whether these relations 
could also be conceptualized to hold at the ontological level. That is, does there 
exist an ontological viewpoint upon which the models are not in contradiction, but 
supplement each other? It will be argued in this chapter that such a viewpoint 
exists under one condition. The condition is that the probability semantics in the 
true score and latent variable models are interpreted at the level of the individual, 
that is, if the probabilities in the models are interpreted as propensities. If this is 
the case, then the models are syntactically, semantically, and ontologically related, 
and merely address different levels of the measurement process. However, as soon 
as the existence of propensities is denied, the models are decoupled in all these 
senses. In that case, the true score model is necessarily false, the latent variable 
model is exclusively about relations between characteristics of subpopulations, and 
the representationalist model is solely about deterministic relations. 

5.2 Levels of connection 

We can address the individual theoretical terms in the measurement models at dif-
ferent levels, and therefore we can also discuss the relations between these terms 
at different levels. I will concentrate here on the levels of syntax, semantics, and 
ontology. It will be shown that, while the syntactical connections are easily estab-
lished and straightforward, the semantical and ontological connections leave much 
freedom of interpretation. An integrated theoretical framework for discussing the 
models will be presented, but it will also be shown that this framework collapses as 
soon as the propensity interpretation of the probabilities in the models is denied. 

5.2.1 Syntax 
Latent variables and true scores Syntactically, the true score model and the latent 
variable model are closely connected. In fact, they are so closely connected that 
the distinction between true scores and latent variables may get blurred in certain 
situations. It is suggested by Schmidt & Hunter (1999, p. 185), for example, that the 
relation between true scores and latent variables is 'usually close enough to linear' 
so that the latent variables approach has no conceptual or practical advantage. This 
is not the case, because whether there is any relation in the first place depends on 
the dimensionality of the latent variable model, which is not tested in the classical 
test model. The mistake made by Schmidt k Hunter (1999) is understandable. 
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however, because if a unidimensional model holds then it will often be possible to 
construct a simple sumscore that can reasonably be used as a proxy for the latent 
variable in question. 

Consider the Item Response Theory model for dichotomous items. It is well 
known (e.g., Lord & Novick, 1968; Hambleton & Swaminathan, 1985) that in this 
case the expectation of the sumscore is a function of the latent variable. Suppose 
subject i's sumscore X is defined as the sum of his item responses on N items, 1, 
. . . , j , ..., N. Let Uij denote i's response to the j t h item. Thus, Xi = J2 ,=i Uij 
and i's true testscore is i, = £ (Xi). For a fixed test consisting of dichotomous 
items, there exists a monotonie relation between t and the latent variable 8. The 
true score is the sum of the individual item response probabilities under the IRT 
model: 

N 

U = E(Xt | 6i) = ] T P(Ui, = 1 | 9i). (5.1) 
3=1 

If the IRT model is parametric, then the function relating t to 9 is also parametric 
and can be used to linearize the sumscore so that equal distances in the latent 
variable match equal distances in the transformed sumscore. For some models, like 
the Rasch model, the function that does this is so simple (the natural logarithm 
of (Xi/N)/[1 — (Xi/N)}) that it can be implemented on a pocket calculator. For 
nonparametric IRT models, no parametric function for the relation exists, but under 
relatively mild assumptions the latent variable still is stochastically ordered by 
the sumscore (Hemker, Sijtsma, Molenaar, & Junker, 1997). Thus, conditional on 
the assumption that a unidimensional model holds, the true score will often be 
strongly related to the latent variable. This can also be seen from the fact that 
Jöreskog (1971) actually derived the congeneric model for continuous responses by 
introducing the requirement that the true scores be perfectly correlated. In this 
case, each true score is a linear function of every other true score, which means that 
all true scores can be conceptualized to be a linear function of a single factor score. 
Although the true score model is usually seen as weaker than the latent variable 
model, Jöreskog in fact introduced the congeneric model by replacing the classical 
test theory assumption of essential tau-equivalence with the weaker assumption 
that the tests are congeneric. The true score model for continuous test scores that 
satisfy essential tau-equivalence is thus nested under the common factor model: it 
can be derived by introducing the restriction that the factor loadings are equal. 

These results are easily misinterpreted and overgeneralized to the conclusion 
that there is basically no difference between the latent variable and true score 
models. This conclusion is erroneous because the relation does not hold in general. 
For instance, in the case of polytomous IRT models, the latent variable is generally 
not even stochastically ordered by the sumscore. In latent variable models with 
correlated errors, which are not uncommon in SEM, the relations will also be more 
complicated, and in case of multidimensional latent variable models the relations 
break down quickly. Finally, if no latent variable model holds at all, we may still 
conceptualize a true score, because the only assumption that is necessary for the 
definition of a true score is that the propensity distribution on which it is defined is 
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nondegenerate and has finite variance (Novick, 1966). However, it is obvious that, 
under the proper conditions, the true score bears a functional rather than stochastic 
relation to the sumscore. Thus, the relation between the true score model and the 
latent variable model is mathematically explicit in some cases, and indeed is a strong 
one. 

Latent variables and scales There are also strong connections between the latent 
variable model and the additive conjoint measurement model. Specifically, special 
cases of latent variable models, in particular additive versions of such models, can be 
considered to be mathematically covered by the additive conjoint model. The class 
of models for which this connection can be set up is quite general (Scheiblechner, 
1999), but for clarity of exposition attention is limited here to the Rasch (1960) 
model. The Rasch model hypothesizes the expected item responses (true item 
scores) to be a logistic function of the latent variable. Thus, subject i's response to 
item j is assumed to follow the function 

pVv) = 1 + e*i+/v
 (5-2) 

where P{Uij) is the probability of a correct or affirmative answer and f3j is the 
location of item j , conceptualized as the point on the 6 scale where P{Uij) = 0.5. 
Now, a monotonie transformation of the item response probabilities will yield a 
simple additive representation. Specifically, the model can be rewritten as 

= 6l+/3j, (5.3) 

where In denotes the natural logarithm. The axioms of additive conjoint measure-
ment hold for the model in stochastic form. 

First, the P{Uij) form a weak order by definition: Transitivity (if P{Uij) h 
P(Uki), and P(Uki) h P{Umn), then P{Uij) h P{Umn)) and connectedness (either 
P(Uij) h P(Uki), or P(Uki) h P(Uij), or both) must hold because probabilities are 
numerical, and numbers are ordered. This interesting fact seems to result from the 
imposition of the Kolmogorov axioms on the probabilities, which, as a result, are 
ordered by assumption. 

Second, the independence condition holds. That is, item difficulty and person 
ability are seen as the two independent variables, and items and subjects are inde-
pendently ordered on ability and difficulty, respectively, by the dependent variable 
P(Uij). Rasch (1960) actually derived the model from the requirement of parameter 
separation, i.e., it should be possible to estimate the ordering of items and subjects 
independently, which basically comes down to the same type of requirement as 
posed by the independence axiom in the additive conjoint model. Rasch called this 
property specific objectivity. Statistically, this implies that the item and person 
parameters can be estimated independently, because the sumscore is a minimally 
sufficient statistic for the person parameter, which enables parameter estimation by 
Conditional Maximum Likelihood (Andersen, 1973). 

In P(Uk 

l - pnja) 
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Third, if the Rasch model is true, then the double cancellation condition is 
satisfied. If, for any three levels of ability and any three levels of item difficulty, if 
it is true that 

02 + ft > h + ft (5.4) 

and it is also true that 
03 + (h > 92 + ft (5.5) 

then 
02 + ft + 03 + 02 > 0i + ft + 02 + ft, (5.6) 

so that 
03 + ft > 0i + ft (5.7) 

and double cancellation holds. Thus, the structure of the Rasch model sustains 
representational measurement theory. As soon as the model is extended with a 
discrimination parameter, as in Birnbaum's (1968) model, this resemblance vanishes 
because the independence condition will no longer hold. 

Scales and true scores The fact that the latent variable model can be constructed 
from the imposition of restrictions on the relations between true scores, and the fact 
that additive latent variable models are special cases of representational measure-
ment theory, suggests that appropriately constructed versions of the classical model 
can be written in representational form too. For instance, the true score model for 
tau-equivalent tests assumes that for any two true scores of person i on tests j 
and k, denoted tij and tik, it is true that tij = c + tik, where c is constant over 
persons. The structure of the model can be written in terms of a common factor 
model (Jöreskog, 1971): 

£ (Xij) = Vj + \6i (5.8) 

where the Vj parameter is a test-specific intercept term that absorbs the effect of 
the constant c in the definition of tau-equivalence, A is the factor loading, and 0, 
is subject i's position on the latent variable. Because, by the definition of tau-
equivalence, A is constant over tests, it has no test subscript as in the congeneric 
model. We may set it to unity without loss of generality. This gives the additive 
representation 

E(XlJ) = vJ + 6l. (5.9) 

The axioms of conjoint measurement then hold for the so constructed model. The 
instrumental comparison is made through the true scores on the tests, as it is made 
through the item response probabilities in the Rasch model. The true scores induce 
an ordering because, like probabilities, true scores are numbers and numbers are 
ordered. The condition of independence holds because the item and person effects do 
not interact (this would occur if the factor loadings differed across items): Persons 
can be stochastically ordered by true scores, regardless of which test is used for 
this purpose, and tests can be stochastically ordered by true scores, regardless of 
which person is used for this purpose. That the double cancellation axiom holds 
is obvious, because the additive decomposition of the observed scores into a test 
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and person specific part guarantees this to be the case; one may follow the line of 
reasoning as discussed above for the Rasch model and substitute Uj for /3j. 

Because the fundamental measurement model works its way up from relations 
between objects, and the presently formulated relations are indistinguishable from 
the relations assumed to hold in the true score model with essential tau-equivalence, 
the classical test theory model allows for an additive conjoint representation under 
the restriction of essential tau-equivalence. It is interesting to note that such a rep-
resentation cannot be constructed under the stronger conditions of tau-equivalence 
and parallelism. Both tau-equivalence and parallelism assume equal true scores 
across tests, which means that the intercept terms Vj are equal across tests. This 
implies that the true scores cannot induce an ordering in these tests, so that the 
additive conjoint model cannot be formulated. 

So, the true score, latent variable, and additive conjoint models are strongly 
related syntactically. Imposing appropriate restrictions on the models allows one 
to juggle the terms around so as to move back and forth between the mathemati-
cal structures. The true score model with the essential tau-equivalence restriction 
seems to serve as a bridge between the latent variable model and the additive con-
joint model: It is a special case of the latent variable model, and the restrictions it 
poses on the true scores guarantee that an additive representation is possible. On 
the other hand, there are syntactical differences between the models that should 
not be forgotten; one can formulate latent variable models that are nonadditive and 
therefore do not generate the possibility to construct an additive conjoint represen-
tation; the true score model can be formulated without invoking a latent variable, 
and latent variable models can be constructed where the true score bears no direct 
functional relation to the latent variable (i.e., multidimensional models, models 
with correlated errors, or models for polytomous items); and the additive conjoint 
model can generate deterministic structures that render the true score undefined 
(i.e., the propensity distribution is non-existent or degenerate, depending on one's 
point of view) and the latent variable model obsolete (i.e., trivial or unnecessary, 
depending on one's point of view). Nevertheless, under the right conditions, there 
is a strong correspondence between the models. The question now becomes: What 
kind of semantics do we need to relate the models not only in terms of mathematics, 
but to keep a consistent interpretation of these relations, and what kind of overall 
conceptualization of the measurement process would this give? 

5.2.2 Semantics and ontology 
The semantics of true score theory, latent variable models, and representational 
measurement are markedly different, as should be clear from the preceding chap-
ters. The reason that the models can nevertheless be related syntactically is that, 
in the above discussion, the models were uncritically defined on probabilities and 
relations among them. However, we have seen in the preceding chapters that the 
interpretation of the probability calculus is not straightforward in the case of psy-
chological testing. In the true score model, probabilities must be interpreted as 
propensities which are defined at the level of the individual; in the latent variable 
model, they may either be interpreted as such propensities, or as characteristics of 
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subpopulations; in the additive conjoint measurement model, the observations are 
assumed to be free of measurement error, so that no interpretation of probability 
is necessary at all. In order to set up the above connections, we have required the 
representational model to take a step back from its empiricist foundation, and to 
grant the existence of probabilities of some kind, but we have not yet interpreted 
these probabilities. Neither have we made a choice with regard to the conceptual-
ization of the item response probabilities in latent variable models. If we are going 
to interpret the connections between the models, we will have to make such a choice. 

Admitting propensities As is so often the case, the most elegant situation occurs if 
we introduce the strongest metaphysics. This, of course, comes down to a propensity 
interpretation of the probabilities in the model. In this case, we conceptualize the 
probabilities as propensities that are uniquely defined for a particular person at a 
particular time point. Interpretation of these probabilities will in general require a 
thought experiment like Mr. Brown's infamous brainwash. 

In this interpretation, the true score, latent variable, and representationalist 
models are strongly related. Semantically, true score theory discusses the relation 
between propensities and observables; latent variable theory posits a hypothesis to 
explain the relations between propensities; and representationalism shows the con-
ditions necessary to construct a representation that preserves the relations between 
subjects, where these relations are defined indirectly via the propensities. Thus, 
true score theory describes, latent variable theory explains, and fundamental mea-
surement represents. Moreover, under appropriate conditions the models are not 
at odds with each other; they simply focus on different levels of the measurement 
process. This is graphically represented in Figure 5.1. 

As the figure illustrates, we have a division of labour between the different 
theories. Classical test theory provides a theory of the error structure. It does so 
by defining the true score as the expected value of the propensity distribution for 
subject i on item or test j . Latent variable models, such as the item response theory 
model, provide a hypothesis concerning the data generating process. The hypothesis 
is that there exists variation on an attribute (the latent variable) which produces 
variation in the true scores. The item difficulty (which could be the intercept term 
in a continuous model) also produces such variation. In the figure, these person 
and item effects are represented as independent. 

The true scores can be used for the instrumental comparison y of the Cartesian 
product terms (i,j), which are defined on the Items x Persons matrix, denoted 
ƒ x P in Figure 5.1. The true scores will form a weak order because they are 
already numerical. Because the effects of item difficulty and latent variable are 
independent, the instrumental comparison will allow for the independent ordering 
of items and subjects. This gives the empirical relational system 0 = ( / x P > ) , 
Perhaps, it should be called a quasi-empirical relational system, because it is defined 
on unobservable propensities. The fact that the effects of person ability and item 
difficulty are independent guarantees that, if the model is true, a transformation of 
the true scores can be found that yields an additive representation, as is the case 
in the Rasch model. The so constructed representation is the numerical relational 
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system TZ = (Re, >). Together Ö and H form an additive conjoint measurement 
structure. What is represented is the trade-off between item and person effects in 
producing true scores. The representation of this trade-off is invariant up to a linear 
transformation, so it is measured on an interval scale. 

Figure 5.1.The relation between Item Response Theory, Classical Test Theory, and Fun-
damental Measurement Theory. 

FM R = (Re,> 

0 = (IxP> 

Representational 
Structure 

CTT p Error 
1J Structure 

IRT Explanatory 
Structure 

The division of labour highlights the different functions of the theories. For 
instance, in the present conceptualization one would not say that the Rasch model 
is a fundamental measurement model, but one would say that the Rasch model de-
scribes (one of the) hypothetical data generating mechanisms that would produce 
data that allow for an additive representation in the fundamental measurement 
theory sense. This is a large conceptual difference, that lies primarily in the dif-
ferent ontological status of the numerical representation, which is a construction 
even if based on relations between propensities, and the latent variable, which is 
a hypothetical attribute that underlies relations between propensities. A related 
difference is that the latent variable model is a hypothesis on the data generating 
process, and therefore claims more than the relations it implies in the data. The 
representation does not have this property, because it is not a posited explanation 
of the relations in the data, but a representation of these relations. That is. one 
can say that the latent variable model is true or false, but one cannot say that a 
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homomorphic representation is true or false; one can only say that it can or cannot 
be constructed. 

Note also that the representation is purely hypothetical: Because unsystematic 
variance is introduced in the error structure, there is no representation of observed 
relations as in typical fundamental measurement theory models. So, strictly taken, 
it is impossible to actually construct the desired representation on the basis of 
observed data. It is, however, the case that, if the model were true, then a repre-
sentation could be constructed if the true scores were observed. True scores cannot 
be observed, so that the representational account must then be viewed as inher-
ently based on a counterfactual line of reasoning. So, even if the latent variable 
model were true, the representation would stay counterfactual as long as we cannot 
observe true scores. It think that this is why, in latent variable models, it is more 
usual to say that one estimates a person's position on the latent variable, than to 
say that one measures that position. This difference in terminology also seems to 
reflect the ontological difference between a latent variable and a measurement scale. 
Thus, in the present scheme, the models are about as closely connected as possible, 
but the difference in ontological tenets remains: latent variables are entities that 
figure in an explanation of how relations in the data arise, while measurement scales 
are constructed representations of the relations in the data. 

The truth of a latent variable model must be considered conceptually indepen-
dent of the possibility to construct a fundamental measurement theory representa-
tion. In principle, the latent variable model may be true, while it is impossible to 
construct a homomorphic representation, and it may be possible to construct such 
a representation, while the latent variable model is not true. An example of the 
former situation would occur in case a common factor model with unequal factor 
loadings, or a Birnbaum model, were true. An example of the latter situation would 
occur when the relations in the data would admit a fundamental measurement rep-
resentation, although no latent variable were responsible for these relations, as in 
the case of spurious Guttman scaling discussed in section 4.2.3.. and in the coin-
tossing example discussed by Wood (1978). This does not mean that either theory 
is in some sense inadequate, but that latent variable and fundamental measurement 
theory are concerned with distinct problems. 

Dismissing propensities Assuming the existence of propensities allows for connect-
ing the latent variable, true score, and fundamental measurement models. However, 
if one dismisses the existence of propensities, the unified picture discussed above 
falls like a house of cards. 

First, if propensities do not exist, then the true score model in the Lord & 
Novick (1968) formulation is necessarily false. This is because in this interpretation, 
the observed score can no longer be viewed as a realization of a random variable 
at the level of the individual, which means that the true score model cannot be 
constructed. If no randomness is associated with the item response process, then 
the probability distribution on which the true score should be defined is degenerate, 
and the core assumption of the true score model (Novick. 1966) is therefore violated. 
Sentences like "the reliability of this test is .88 in population X' cannot, in principle, 
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be true in this interpretation. At most, one could rephrase such sentences in the 
counterfactual form, and state that "if the observed scores had been generated by a 
random process, etc., then the reliability of the test scores would have been .88 in 
population X'. Such counterfactuals may be useful and informative, but the place 
and conceptual status of counterfactual information about test scores would require 
some serious rethinking of the use of classical test theory in test analysis. 

The latent variable model could be true without a propensity interpretation if 
a repeated sampling perspective is adopted. The validity of latent variable models 
would then be relevant only at the level of aggregate statistics; because there is 
no randomness associated with an individual's item responses, the models would 
be necessarily false at the individual level. In this interpretation, the connection 
between true score theory and latent variable models breaks down. Since there is 
no randomness at the individual level, there is no true score, and a statement to 
the effect that the true score is monotonically related to the latent variable cannot 
be made. In a repeated sampling interpretation, the latent variable model states 
that differences between subpopulations at the latent level lead to differences be-
tween subpopulations at the observed level, and nothing more. The model uses 
probability semantics and the expectation operator, but only to deal with sampling 
variation; the expectation is conceptualized as a population mean, as it is in stan-
dard population-sampling schemes in statistics, and not as a true score. To interpret 
such models as process models that apply at the level of the individual amounts 
to a logical fallacy. Nevertheless, the basic idea of latent variable models, which 
is that variation in the latent variable produces variation in the observed scores, 
may be maintained, elaborated upon, and endowed with a substantive theoretical 
interpretation. 

For fundamental measurement theory, denying the validity of probability assign-
ments at the individual level has no theoretical consequences. Since the model is 
most naturally stated in deterministic terms in the first place, the theory does not 
have to be modified or reinterpreted when responses are stripped of randomness at 
the level of the individual. Such a view does lead to the conclusion that the axioms 
of fundamental measurement are usually not satisfied by empirical data, either in 
psychology or elsewhere. This observation, of course, is hardly surprising, given the 
strict demands of the theory. What is interesting, however, is that the connection 
between probabilistic latent variable models and fundamental measurement breaks 
down if the propensity interpretation is denied. For instance, the stochastic domi-
nance relations as discussed by Scheiblechner (1999) no longer apply, because they 
are defined on true scores, which are no longer admitted in the present interpre-
tation. Thus, the only item response model that is properly admitted as a case 
of fundamental measurement in this interpretation, is the deterministic Guttman 
model. It is thus clear that the popular view, which holds that the Rasch model 'is' 
a fundamental measurement model (Perline, Wright, & Wainer, 1978; Scheiblech-
ner, 1999; Bond k Fox, 2001), is parasitic on the stochastic subject interpretation 
of the item response model. Once that interpretation is denied, the Rasch model 
has little to do with fundamental measurement. In fact, the only thing that con-
joint measurement and Rasch models have in common, in this interpretation, is 
additivity. 
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Thus, there are at least two ways of looking at the relations between the different 
theories of measurement discussed in this book. The similarities and dissimilari-
ties between these models depend on a rather high level philosophical assumption, 
namely on whether one wants to admit propensities into psychological measurement 
or not. Admitting propensities gives a consistent and unified picture, in which the 
different approaches focus on different parts of the measurement process, but are 
not necessarily at odds. Denying the existence of propensities immediately destroys 
the classical test model, and leaves one with two models that have relatively little 
to do with each other. 

5.3 Discussion 

This chapter has aimed to clarify the relations between the models discussed in this 
book. It has been shown that the models are syntactically related in quite a strong 
sense. However, when viewed from a semantic perspective, whether these connec-
tions continue to hold depends on the interpretation of probability: Probability 
must be interpreted in a propensity sense, otherwise the models are unrelated. In 
spite of this, the difference in ontological tenets with respect to the central concepts 
in the models (i.e., true scores, latent variables, and scales) remains, regardless of 
the interpretation of probability. These conclusions will be examined in somewhat 
greater detail in the next sections. First, the general problem concerning the the-
oretical status of measurement concepts will be discussed. Second, I will shortly 
review arguments for and against the propensity and repeated sampling interpre-
tations of probability. Third, further differences between the latent variable model, 
on the one hand, and the representational model, on the other, will be discussed 
in terms of the degree of experimental control that they presuppose, an issue that 
proves to be closely connected to the local homogeneity condition discussed in Chap-
ter 3. Finally, the models will be evaluated in terms of the semantics they yield for 
validity; in this section, it will become apparent that, when the models are required 
to specify a relation between the observed scores and a theoretical attribute, both 
the classical test theory model and the representationalist model converge to a la-
tent variable formulation: classical test theory because it has to be strengthened, 
and representationalism because it has to be weakened. The formulation of validity 
so reached has important consequences for validity theory in general, which will be 
discussed in the next chapter. 

5.3.1 Theoretical status 
It is instructive to review the conclusions reached in this book with respect to the 
theoretical status of the central concepts in the measurement models discussed. We 
have seen that classical test theory defines the true score in terms of the expectation 
of a series of replications of the same item or test. It has been argued in Chapter 2 
that it does not make sense to say that two tests x and y "measure' the same true 
score, as is suggested in the definitions of parallelism and tau-equivalence. It does 
make sense to say that the true scores on test x and test y have the same numerical 
value, but this is a statement of an entirely different character. The fact that the 
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true score is explicitly defined in terms of a particular test, implies that the meaning 
of the true score is exhausted by reference to the operations that lead to it. That 
the operations require brainwashing and cannot be carried out is peculiar, but does 
not refute this conclusion. Thus, the psychologist who defines intelligence as a true 
score takes an operationalist position with respect to the construct. He cannot do 
otherwise. 

Latent variable theory supplements classical test theory precisely by broaden-
ing the meaning of the theoretical terms in the model. Latent variables are not 
exhaustively defined by a series of operations, otherwise two distinct tests could 
not measure the same latent variable. That latent variable theory allows for the 
statement that different tests can measure the same latent variable is obvious; if 
this were not possible, common applications like test equating and adaptive test-
ing would lack a theoretical basis. That they do not lack such a basis means that 
the latent variable has surplus meaning over the observation statements and the 
operations that lead to them. It is not an operationalist concept. Upon this con-
clusion, the question occurs whether the theoretical term 'latent variable' must be 
taken to refer to reality or not. It seems to me that it should be taken to do so. 
Several arguments for this conclusion have been adduced in Chapter 3. I would 
like to discuss one other argument because it brings out clearly the difference with 
representationalism. 

It has been observed several times that the syntactical equivalence between 
probabilistic versions of additive conjoint measurement and latent variable theory 
breaks down if we allow the slope of item response functions to differ across items, 
as is the case in the congeneric model and in the Birnbaum model. Mathemati-
cally speaking, the reason for this is very simple, because it means that no additive 
representation is possible if additivity is violated, which comes down to the triv-
ial observation that additivity is violated if additivity is violated. Conceptually, 
however, there are more interesting things going on. 

What the existence of nonadditive latent variable models illustrates, is that 
latent variable theory not only allows for the possibility that different items measure 
the same latent variable, but that it also allows for the even stronger claim that 
a given set of items can measure the same latent variable differently in different 
subpopulations. This is clear from the fact that nonadditive latent variable models 
imply that items have different difficulty orderings in subpopulations high and low 
on the trait. 

Similar considerations play a role in the definition of bias with respect to group 
membership. The concept of bias means that the expected value of an item response 
differs across groups, conditional on the latent variable, for at least one position on 
that latent variable. Such a situation occurs, for instance, when females have a lower 
expected item response on an IQ-item than males, where the comparison is between 
subpopulations of males and females that have the same level of intelligence. This 
method of conditioning on the latent variable is very common in latent variable 
models. It is highly interesting. 

The reason for this is the following. What do we assert when we say that an 
item has different expected values across groups, conditional on the latent variable? 
It seems to me that we are in effect asserting that the item has different expected 
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values across groups, conditional on the same latent variable. What we have to 
assume, then, is that the item does measure the same latent variable across groups. 
Otherwise it would be meaningless to condition on this latent variable. The problem 
formulated in item bias is not, therefore, that the item in question measures a 
different latent variable in each group, but that it measures the same latent variable 
differently in each group. Thus, not only is it the case that latent variables are not 
exhaustively defined by the items that measure them; they are not even exhaustively 
defined by the item response functions. For if the latter were the case, this would 
preclude the formulation of item bias. And nothing precludes the formulation of 
item bias. 

The common practice of conditioning on the latent variable across groups with 
different response functions presupposes a kind of meaning invariance of the latent 
variable concept. Now, this invariance cannot be reduced to the fact that a particu-
lar set of items is used, as in operationalism, for this would preclude the possibility 
of unidimensionality and adaptive testing. It cannot be reduced to the ordering of 
the items, for in a nonadditive model this ordering is not invariant across trait lev-
els. It cannot be reduced to the invariance of item response functions, for these may 
be different across groups. And it cannot be reduced to the invariance of theoretical 
relations in which the latent variable enters, for these will also be different across 
groups (for instance, a latent variable may be correlated to some other variable in 
one group but not in another, while we are still talking about the same latent vari-
able). Where, then, does this meaning invariance come from? What would allow us 
to say that we are measuring the same latent variable in all these cases? It seems 
that this meaning invariance can only be upheld if the latent variable is granted 
an existential status that is essentially independent of the measurement procedure 
or the theory in which it figures. Thus, the psychologist who views a theoretical 
concept like intelligence as a latent variable must subscribe to a realist position. 

It has been argued in Chapter 4 that representationalism is based on an em-
piricist philosophy of science. Its central concept, the measurement scale, is a 
constructed representation of relations between the objects measured. Can a rep-
resentationalist formulate a concept such as item bias? It seems to me that this 
will be fairly difficult. Suppose that we have two populations A and B, and that 
in each population the responses on a three item scale, consisting of items j , k, 
and I. conform to a Rasch model. Further suppose that item I is, in latent variable 
terms, biased, and that it is biased to such a degree that it is more difficult than 
item k in population A, but less difficult than item k in population B. So, in each 
population an additive conjoint representation is possible, but in the union of these 
populations it is not. Now, the latent variable theorist could, in principle, allow for 
the different item orderings in each population and still estimate the position on the 
latent variable. He could even compare the populations with respect to the latent 
variable distributions. This may, in many cases, be objectionable from a substantive 
point of view, but it is logically and technically possible (see Borsboom, Mellen-
bergh & Van Heerden, 2002-b1. for some examples where this procedure may also 
be plausible from a substantive point of view). However, the important point is not 

1 This paper is included in this dissertation as Appendix B. 
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whether this would be generally appropriate, but that nothing in the formulation 
of the latent variable model precludes it. The representationalist does not seem to 
be in a position to take such a course of action. The qualitative relations mapped 
into the numerical domain in population A are different from those in population B. 
Because measurement is representation, it seems to me that the representationalist 
must say that something different is being measured in each population, not that 
the same attribute is being measured differently. The representationalist cannot 
therefore assume the kind of meaning invariance that the latent variable theorist 
can. 

The reason for this lies in the different ontological tenets of the models. If 
the representationalist cannot construct a representation, nothing is measured; he 
cannot reify a measurement scale without contradicting himself. The latent variable 
theorist can imagine the wildest situations because he takes the ontological freedom 
to postulate a latent variable, and take it from there; the representationalist cannot 
imagine any measurement situation where he could not construct a homomorphic 
representation on the basis of empirical relations, for such a situation would not 
allow for use of the term measurement. Thus, the representationalist model does 
not have the metaphysical richness to allow one to posit the existence, in reality, of 
more than the relations in the data to be represented. Where the latent variable 
theorist cannot keep a consistent position without a realist interpretation of latent 
variables, the representationalist cannot keep a consistent position with a realist 
interpretation of measurement scales. 

The researcher who views intelligence as a measurement scale thus takes a con-
structivist position with respect to the attribute in question. Because the existence 
of a measurement scale depends on the possibility to construct it, such a researcher 
must moreover conclude that general intelligence does not exist at the present time, 
because nobody has constructed a general intelligence test that allows for a homo-
morphic representation. However, all is not lost, because it also follows from the 
identification of intelligence with a measurement scale, that general intelligence may 
come to exist tomorrow at 2.14 PM, if someone were to construct a homomorphic 
mapping of general intelligence test items at that particular time. This kind of 
relativism with respect to theoretical entities is strongly reminiscent of positivism. 

These observations are relevant with respect to the theoretical status of psycho-
logical constructs in general. Of course, positions of all kinds can be defended for 
a construct like intelligence. The reason for this is that the theory of intelligence 
is not formulated in sufficient detail to imply a realist, constructivist, or opera-
tionalist position. So, one may hold the view that intelligence is a causally efficient 
entity, or that it is just a heuristic concept, useful to organize our observations, or 
that it is a dispositional characteristic, or that it is a social construction, and so 
forth. But when a construct like intelligence is related to the observations, some 
kind of measurement model must come into play. And it is at this point that the 
researcher must commit to an ontology for the construct. If he is an operationalist 
or constructivist, he should not let himself be drawn into latent variable models; 
for then he will have to posit an ontological position that is too strong. If he is a 
realist, then research conducted within the framework of classical test theory can-
not be considered to put the proposed ontology to the test. If he does not want to 
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commit to realism, but neither to operationalism. he may opt for representational 
measurement theory. 

If I am correct in my analysis, psychology suffers from a substantial concep-
tual confusion in the interpretation of its theoretical terms, tor instance, some 
researchers in personality give the impression that executing a principal compo-
nents analysis tests the hypothesis that the Five Factors of personality are real and 
causally efficient entities. A principal component analysis, however, is a special case 
of the formative model discussed in Chapter 3, so as far as I am concerned this spe-
cific ontological tenet (which is the subject of heated discussions; Pervin. 1994) has 
not been tested in such research. Similarly, many people working in latent variable 
theory seem to regard latent variables as nothing more than economic representa-
tions of the data. However, commonly used latent variable model are usually not 
representations of the data in a rigorous fundamental measurement theory sense, 
and it is unclear why one would need latent variables analysis for economic repre-
sentations in a less rigorous sense; principal components seem good enough, and 
are much easier to obtain. Others think that a factor in a factor analysis is the 
'common content' of the items; but this is also inconsistent, for common content 
is a characteristic of items, while a latent variable is a characteristic of subjects. 
Finally, I suspect that the majority of researchers in psychology, who hold a realist 
position with respect to their constructs, will not hesitate to equate these constructs 
with true scores; a position that is, in general, inconsistent. 

Is this important? That depends on the situation. I personally feel that the 
most serious mistake consists in asserting realism about constructs on the basis of 
the wrong model. Somebody who thinks that he has proven the existence of general 
intelligence because one principal component had an Eigenvalue larger than one, or 
because Cronbach's a was over .80, has never tested the ontological claim involved. 
Such cases abound in psychology. Of course, someone who has successfully fitted 
a unidimensional latent variable model has not proven the existence of a latent 
variable either, but at least that hypothesis has been tested, however indirectly. 
Mistaken reification seems to me the most serious fallacy that can be made with 
respect to the problems discussed here. The other mistake, i.e., claiming that no 
theoretical concept in the models discussed could ever exist, does not seem so grave. 
I see no particular problem with an intelligence researcher who neither believes that 
intelligence exists, nor that such a hypothesis is tested in a model of any kind. One 
could say such a person is perhaps being overly skeptic, but the skeptic has a 
philosophical problem, not necessarily a scientific one. Moreover, skeptics usually 
play a healthy role in the scientific discussion, while communities of believers seem 
to be able to propagate mistaken conclusions indefinitely. This is especially true 
of psychology, where ontological realists about attitudes, personality traits, and 
general intelligence, are hardly ever pressed to use the right model for testing their 
claims. 

5.3.2 The interpretation of probability 
The interpretation of the theoretical status of the discussed models, the theoretical 
terms figuring therein, and the relations between these models, were seen to depend 
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crucially on the interpretation of probability. Obviously, neither the stochastic sub-
ject nor the repeated sampling interpretation of probability is logically imposed 
upon us. Can we nevertheless force a choice between these interpretations? For ex-
ample, could such a choice be defended on more general metatheoretical principles? 

From this point of view one may, for instance, argue that the stochastic sub-
ject interpretation is flawed, because Mr. Brown's brainwash is simply a ridiculous 
and inadmissible thought experiment. However, the interpretation of probability 
in models like the ones discussed here always requires a thought experiment of 
one variety or another. Mr. Brown's brainwash is the variant that goes with the 
stochastic subject interpretation. The repeated sampling interpretation, however, 
no less requires a thought experiment. Usually, we are not sampling at random from 
well defined populations, as the statistician would like us to do. In fact, generally 
nothing that resembles the statistician's idea of sampling has occurred in the first 
place; in psychology, 'sampling' often merely means that not all six billion people 
on this earth have been tested. Thus, the random sampling view must also take 
recourse to a thought experiment - this time in terms of hypothetical repeated 
sampling from a subpopulation of people with the same position on the latent vari-
able - if an interpretation of its terms is asked for. Moreover, the population in 
question will often be idealized. For instance, the population may be assumed to be 
normally distributed over a continuous latent variable, which is unrealistic if only 
because there are not enough people to realize that assumption. Thus, the intro-
duction of a thought experiment seems unavoidable in both interpretations, and it 
may well be unavoidable in applied statistics in general (Borsboom, Mellenbergh, & 
Van Heerden, 2002-a). One cannot argue that the propensity interpretation must 
be discarded because it invokes a thought experiment, for the repeated sampling 
interpretation does so too. At best, one could argue that one of the interpretations 
should be favored because it introduces a 'better' thought experiment, but I do not 
see what the grounds for such an argument could be. 

One could also claim that propensities should be cut away by Occam's razor, 
because they are superfluous: The model can be formulated without mentioning 
propensities. Ellis (1994, p. 5) quotes a personal communication with Paul Hol-
land, in which the latter is reported to have said that " . . . the stochastic subject 
hypothesis is a bad hypothesis. Like God, it is not needed". Such an argument 
may seem attractive, but I think it it oversimplifies the problem. First, it is most 
certainly not the case that propensities do no theoretical work at all: We have seen 
in this chapter that, at the very least, they yield a unified and consistent picture of 
psychometric theory. And unification could be seen as a metatheoretical principle 
with about equal force as the parsimony principle. Moreover, the psychologist who 
maintains that his theory is about propensities is justified in using these propensities 
to derive predictions with respect to between-subjects data. That his predictions 
could also be derived from a theory which does not mention individual level propen-
sities means that the theory is underdetermined by empirical data; but this cannot 
be taken to be a decisive argument against his use of propensities, because every 
theory is underdetermined by empirical data. And that there is usually an alter-
native explanation of the between-subjects data, which does not use propensities, 
does not imply that such an alternative explanation is plausible; in fact, it may 
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well be that no substantive interpretation is available for that explanation, so that 
it remains a purely statistical oddity. Thus, although the introduction of propen-
sity undoubtedly introduces a metaphysical element in a psychological theory, one 
cannot say that it should therefore be considered inadmissible, unless one holds an 
unduly narrow view of what is admissible in scientific research. 

Perhaps, many more philosophical arguments for one or another interpretation 
could be given. However, I think that none will be decisive. Methodological prin-
ciples or philosophical arguments do not have enough force to clinch this problem. 
This may have to do with the fact that the interpretation of probability is an in-
tricate problem in general, and not just in psychometric models (e.g., Nagel, 1939; 
Fine, 1973; DeFinetti, 1974; Popper, 1963; Hacking, 1965). No decisive argument 
has, to my knowledge, ever been presented for or against a specific interpretation 
of probability, and there seems no reason to expect that such an argument would 
be available in the present situation. If this is correct, i.e., if the choice between 
these interpretations cannot be motivated on general principles, then it must be 
motivated on other grounds. It would seem that the problem should then be passed 
on to substantive psychological theory. And this brings us back to a problem that 
was already discussed in Chapter 3: Namely, what is the range of application of 
theoretical constructs? That is, do they apply to individuals, or solely to interindi-
vidual comparisons, or to both? I am aware of the fact that I am passing on a highly 
difficult problem to psychologists. On the other hand, it would be strange if the 
interpretation of a term so crucial as probability would be given by methodological 
considerations. If psychology constructs probabilistic laws, as has often been said in 
the philosophy of science (Hempel, 1962; Nagel, 1961), then it is up to psychology 
to decide in which sense they are probabilistic. 

5.3.3 Experimental control and local homogeneity 
An important point of difference between representational measurement on the 
one hand, and latent variable theory on the other, concerns the importance of 
experimentation. It is seems that the examples, that representationalism considers 
to be genuine instances of measurement, require quite a large degree of experimental 
control. Latent variable theory does not require such control; in fact, it does not 
even require that the latent variable position can be manipulated in principle. 

Consider, for instance, the fundamental measurement account of length. The 
adequacy of this account hinges on the possibility to concatenate objects. It is 
paradigmatic for fundamental measurement that, if one has two objects a and b of 
unequal length, say a ;< b, then it must always be possible to find a third object 
c so that the concatenation of a and c is not noticeably different (i.e., both ^ 
and y to) from b. This is a prediction of what would happen upon executing a 
special kind of experiment. Concatenation can thus be considered an experimental 
manipulation of the variable length, in which the additivity of length is tested. Of 
course, nobody would ever carry the experiment out, because it is obvious from 
the outset that length supports such experimental manipulations, and most people 
will have an overwhelmingly strong intuition that this experimental 'hypothesis' is 
true (although one could, strictly speaking, doubt it; Batitsky, 1998; Rozeboom, 
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1966-b). 
Similar considerations are invoked in conjoint measurement. The idea of conjoint 

measurement is that one can experimentally vary the levels of both independent 
variables and assess their effect on the dependent variable. For a trade-off to be 
represented, it must not only be theoretically, but experimentally possible to find 
a change of levels in the first factor that can undo the effect (on the dependent 
variable) of a change levels level in the second factor. This means it is essential for 
the possibility of conjoint measurement that one has experimental control over the 
independent variables. 

In contrast, even in the cases of latent variable theory that admit for an additive 
representation to be based on the true scores, such experimental control will not 
often be possible. For this would require not only the ability to induce changes 
in item difficulty (something that one could imagine to be relatively manageable), 
but also the ability to induce changes in the position on the latent variable. It 
is interesting to note that, if we were able to change a person's position on a 
latent variable in order to test the axioms of conjoint measurement, the resulting 
changes in true scores should comply with the model in order to sustain additive 
conjoint measurement. Thus, additive conjoint measurement presupposes that local 
homogeneity, as discussed in Chapter 3, holds. 

It would seem, then, that the additive conjoint measurement model requires 
the validity of the very same within-subjects causal accounts that were argued, 
in Chapter 3, to be untenable for many situations where latent variable theory is 
applied. Moreover, not only does the additive conjoint model require that such 
accounts are true; it requires that we are actually able to induce changes in the 
latent variable to show that it is true. And only if we are able to induce these 
changes, as well as changes in the item difficulty, and are able to show that the so 
constructed trade-off is additive, could we say that we have a latent variable model 
that is truly a measurement model in the representationalist sense. 

It cannot be doubted that, if one has the degree of experimental control that 
additive conjoint measurement requires, one has the strongest possible evidence for 
the validity of the testing procedure. For it would mean that one knows exactly 
how to manipulate the latent variable to bring about effects of any required size. 
It would mean that, if I brought to you Mr. Brown, and asked you to to change 
his position on the latent variable 'attitude towards the United Nations' by just the 
amount necessary to change his true score on the item 'Is your attitude towards 
the United Nations favorable' from .90 to .92, you would actually know what to 
do. This is, of course, very far removed from fitting a Rasch model. It also means 
that, if a representationalist would allow latent variable models into his conception 
of measurement, he would need to adhere to the same form of realism that has, in 
Chapter 3, been argued to be indispensable for a consistent interpretation of latent 
variable theory. 

Thus, representationalism could be viewed as making experimental control a 
more or less defining feature of measurement. However, there seem to be many 
situations in which latent variable theory can be applied, where the required degree 
of experimental control is not only practically infeasible, but prohibited by the 
construct definitions. For instance, some conceptualizations of general intelligence 
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hold that this is a stable, or even immutable, attribute, so that experimental control 
is structurally impossible. In such cases, the construct definitions resist a treatment 
of the construct in terms of conjoint measurement. In fact, one would have to say 
that, if this theory of intelligence were true, then it would be impossible to measure 
intelligence in the additive conjoint sense. This, however, would seem to me an 
argument against the generality of conjoint measurement, rather than an argument 
against the hypothesis that individual differences in general intelligence - if general 
intelligence exists - could be measured. 

Now, in Chapter 3, the suspicion has been raised that most psychological con-
structs will not be of the locally homogeneous kind. If this is correct, then the 
additive conjoint account, when supplemented with the demand that experimental 
control be possible, would have to say that we cannot use testing procedures to mea-
sure interindividual differences on these constructs. Latent variable theory would, 
of course, still be applicable, because its statistical formulation does not include the 
local homogeneity hypothesis. Thus, the difference between the latent variable and 
representational models remains substantial, even though their formalizations may, 
in some cases, be very similar. 

I do not know exactly where representationalism stands on this issue. It seems to 
me, however, unreasonable to bring experimental control into a general definition 
of measurement. In fact, this seems to put the horse behind the cart. In the 
context of length measurement, for instance, we can concatenate some - not all 
- objects because length is quantitative and supports additivity. I find it strange 
to turn this argument around, and to say that length is quantitative and supports 
additivity because we have enough experimental control to execute concatenation 
operations. Moreover, concatenation operations are possible not just because length 
is quantitative, but also because the type of objects which we would choose to 
concatenate have a large number of other physical properties that allow for such 
experiments. One such property is that we can imagine objects to be stable with 
respect to length ('rigid' as representationalism would say), and also pretty stupid so 
that they do not change their manifest behavior (which is doing nothing) as soon as 
they notice we concatenate them (something that people tend to do when they know 
they are being measured). This, however, is not just because length is quantitative 
and can be measured; it has to do with the physical structure of objects of a certain 
manageable length, and with the fact that we are not inclined to disagree with the 
multitude of silent assumptions made, like the assumption that rods are rigid. Thus, 
while the possibility to execute experiments like concatenation supports the claim 
that measurement is taking place, it cannot be taken to be a defining characteristic 
of measurement. If a psychologist is measuring individual differences on a locally 
irrelevant construct, he is not claiming that he can experimentally manipulate a 
person's position on this construct; in fact, he may be claiming the opposite. This 
does not invalidate the claim that he is measuring individual differences, for he 
has never claimed to have experimental control of the required type, nor has he 
formulated an assumption of this sort in the model. It is certainly the case that he 
dimension he is working with applies only to individual differences and to nothing 
more. But this does not imply that he cannot measure individual differences. 
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5.3.4 Validity and the relation of measurement 

Because the theories discussed in this book entertain a radically different conception 
of what it means to measure something, one may expect them to give different 
accounts of what it means for a measurement procedure to be valid. In this respect, 
it is remarkable that influential treatises on validity, a concept deemed central 
to measurement, only superficially address theories of measurement, if at all. It 
seems to be tacitly assumed that it does not really matter whether one conceives 
of measurement from a true score perspective, a latent variables perspective, or a 
fundamental measurement theory perspective. As these theories conceive of the 
measurement process differently, however, it is likely that the semantics of validity 
that they give will differ. To investigate this matter, consider a simple sentence like 
'IQ-tests measure intelligence'. Let us inquire what would make this sentence true 
in each of the theories discussed. 

First, consider the measurement process from a classical test theory perspective. 
We have seen in Chapter 2, that classical test theory conceives of measurement in a 
statistical fashion. As Lord & Novick (1968, p. 20) put it, a test score is a measure 
of a theoretical construct if its expected value increases monotonically with that 
construct. At first sight, the theoretical construct could be taken to be the true 
score. Oddly enough, however, the true score is itself defined as the expected 
test score. Because true scores are identical to expected scores, and because any 
variable increases monotonically with itself, every test must measure its own true 
score perfectly. Therefore, if the true score on an IQ-test is considered to be identical 
to intelligence, the proposition 'IQ scores measure intelligence' is true by definition. 
This is because the proposition 'IQ-scores measure intelligence' is transformed to 
'the expected IQ-scores are monotonically related to the true scores on the IQ-
test' which is vacuously true since the true scores are identical to the expected 
scores. Because the line of reasoning succeeds for every conceivable test, in this 
interpretation every psychological test is valid. However, it is only valid for its own 
true score. This is the price of operationalism: If the construct is equated with 
the true score, each distinct test defines a distinct construct, because it defines a 
distinct true score. 

An alternative interpretation of classical test theory is that the observed scores 
do not measure the true scores (after all, it is rather odd to say that an expected 
value measures itself), but that the true scores measure something else, in the 
sense that they are themselves monotonically related to the theoretical construct in 
question. Viewing the issue in this way, the sentence 'IQ-scores measure intelligence' 
is true if the true scores on the test are monotonically related to intelligence. From 
a classical test theory perspective, this means that the theoretical construct cannot 
be conceived of as represented in the measurement model for the test in question, 
but must be viewed as an external variable. This prompts the conceptualization of 
validity as correlation with a criterion variable, which yields the concept of criterion 
validity. 

Criterion validity has been extremely important to the theoretical development 
of the validity concept, for the following reason. Originally, the criterion was con-
sidered to be an observed variable, such as grades in college. Because the validity 
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question refers to measurement and not to prediction, and because IQ-scores do 
not attempt to measure college grades (which are, after all, observable) but intel-
ligence, the criterion validity view was never an adequate conceptualization of test 
validity. One possible response to this is to sweep the criterion variable under the 
carpet of unobservability, and to grant it the status of a hypothetical entity. In 
such a view, the definition of validity in terms of a statistical relation (i.e., the true 
score increases monotonically with the theoretical construct) is typically retained. 
The measurability of the intended construct (intelligence) is thereby hypothesized 
a priori, and the validity of the measurements (IQ-scores) is conceptualized as a 
monotone relation of the true scores on the IQ-test with this hypothetically mea-
surable attribute. 

In this view, validity is external to the measurement model, because in classical 
test theory a theoretical construct such as intelligence cannot be non-vacuously rep-
resented inside the measurement model. The proposition 'IQ-scores measure intelli-
gence' thus becomes 'the true IQ-scores increase monotonically with a hypothetical 
criterion variable called intelligence'. Attempts to find 'perfect' measurements of 
intelligence that could function as a standard, analogous to the standard meter in 
Paris, have, of course, proven fruitless. The type of thinking introduced by looking 
at intelligence as a criterion variable outside the measurement model is, however, 
still a very common way of thinking about test validity. That is, there is 'something 
out there', and the question of validity is how high the correlation between our test 
scores and that something is. This renders the semantics of validity dependent on 
two assumptions: 1) there really is something out there (intelligence), and 2) the 
test scores have a monotonically increasing relation with that something. If this is 
the case, then the proposition 'IQ-scores measure intelligence' is true. An interest-
ing aspect of this view is that, because expected test scores will have monotonie 
relations with many attributes, any given test measures an indeterminate number 
of attributes. Thus, measures are not uniquely tied to a construct. If measurement 
is further reduced to correlation, everything measures everything else to a certain 
extent, and all tests must be valid. However, the requirement that true scores be 
monotonically related to the attribute to be measured is highly similar to the latent 
variable model: in fact, latent variable theory can be viewed as an elaboration of 
this idea. 

The reason that classical test theory must consider theoretical constructs as ex-
ternal to the measurement model is that the syntactical machinery of the theory is 
not rich enough to represent constructs inside the model. As we have seen, the true 
score cannot perform this function without rendering a completely trivial account of 
measurement. Latent variable models do possess the required terminology. As has 
been discussed in Chapter 3, such models can be viewed as relating the true scores 
on a number of items or tests to a latent variable, or as relating subpopulation pa-
rameters to a latent variable. In either case, the latent variable must be considered 
to function as a representative for the theoretical construct (to be distinguished 
from the function of fundamental measurement scales, which are representations 
of observed relations). The relation of measurement in latent variable models is 
rather similar to the statistical formulation of classical test theory; namely, it is 
conceived of in terms of a stochastic relation that the observed scores have with the 
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latent variable. However, these models do have the power to dispose of the problem 
that tests are valid for any attribute they are monotonically related to, because the 
dimensionality of the latent space can be specified in the model. 

For example, in the unidimensional case, a latent variable model specifies that 
the true scores on each of a number of indicators are monotonically related to the 
same latent variable. Moreover, within such unidimensional models it is assumed 
that the indicators measure only this latent variable and nothing else. This implies 
that the indicators are independent, conditional on the latent variable. If, con-
ditional on the latent variable, the indicators are still related to another variable 
(for example, group membership), the indicators are considered biased. Thus, if 
unidimensionality is posited, measurement can be seen as a monotonie relation of 
the expected scores with a latent variable, and only with this latent variable (in the 
sense that they do not systematically relate to another variable, given the latent 
variable). The proposition 'IQ-scores measure intelligence' then becomes 'the ex-
pected IQ-scores increase monotonically with the latent variable intelligence, and, 
given the latent variable, with nothing else'. It follows that the semantics of unidi-
mensional latent variable models do not allow indicators to be valid for more than 
one latent variable, in contrast to the classical test model. Of course, this only 
holds for unidimensional models, and not for latent variable models in general. 

In representationalism, measurement is a process of representing observed rela-
tions between subjects and items in a number system, which results in a measure-
ment scale. This scale is a product of human activity: it is therefore not necessary 
to assume, a priori, that scales exist independently of the act of measurement, and 
that they are somehow responsible for the observed relations. This is in sharp 
contrast to latent variable models. Scales represent relations, they do not cause 
relations. Now, if observed relations can be represented in the number system (that 
is, if a homomorphism can be constructed), the resulting scale is an adequate repre-
sentation by definition, and therefore measurement has succeeded. If the procedure 
fails, measurement has not taken place. 

Let us consider our paradigm example, and interpret the proposition 'IQ-scores 
measure intelligence' from this perspective. In a strict interpretation, representa-
tionalism demands direct observability and experimental control with respect to the 
attribute in question. In this interpretation, IQ-tests cannot be considered valid for 
measuring intelligence; for neither the required relations, nor the experimental con-
trol over the attribute, have been shown to hold. Thus, from a representationalist 
perspective, IQ-tests in psychology cannot possibly measure intelligence, for they 
cannot be said to measure anything at all. The proposition 'IQ-scores measure 
intelligence' is thus false. Moreover, from a fundamental measurement perspective, 
measurement is extremely rare in psychology (if it occurs at all), because very few 
psychological tests produce the type of consistencies required for representational 
theory to operate. Thus, according to this definition of measurement, most or all 
psychological tests are invalid. 

Still, this does not answer the question where representationalism would put 
the relation of validity; it merely says that psychological tests are invalid. I think 
that, if representationalists took the theoretical presuppositions of psychologists 
seriously, they would end up with a relation that is highly similar to, or in fact 
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even the same as, the one posited in latent variable theory. The representation-
alist would first need to accommodate for the problem of error, that is, he would 
need to incorporate probabilistic relations. It has been argued in Chapter 4, and 
in the present chapter, that this will almost unavoidably lead to a latent variable 
model formulation. Second, he would need to step back from the requirement of 
experimental control. For it is ridiculous to demand such control if psychological 
theory itself holds that such control is not possible; therefore, representational-
ism would have to admit the possibility that constructs, which are irrelevant or 
heterogeneous at the level of the individual, may still be invoked in the measure-
ment of interindividual differences - as long as the measurement relation is not 
misinterpreted as applying to within-subject dimensions. Of course, in the locally 
homogenous case, there is no problem at all, because experimental manipulations 
of the latent variable - if possible - would lead to changes that are in accordance 
with the hypothesized model, as the representationalist would require. Dropping 
the requirement of experimental control does not prohibit a causal interpretation 
of the relation between the attribute and its indicators; in fact, it would seem plau-
sible for the representationalist to demand that such an interpretation holds. This 
requires the representationalist to abandon the empiricist position completely; for 
now he will have to hold that the attribute exists and has causal relevance for the 
observed variables. It thus seems that, if the representationalist gave up the em-
piricist foundation of the theory, incorporated a probabilistic relation between the 
attribute and the observed variables, and weakened the requirement of experimen-
tal control to the requirement that a causal relation should hold, he could occupy 
the same philosophical position with respect to the validity concept, as the latent 
variable theorist. 

So, with respect to the relation of validity, we must conclude the following. 
Classical test theory does not formulate a serious account of measurement, and 
therefore is inadequate to deal with the question of validity. In fact, if it begins to 
formulate such an account, it invokes a kind of embryonic latent variable model. 
Latent variable theory is able, by its very conceptualization, to hold that measure-
ment is a causal relation between the latent variable and its indicators. In fact, 
this is a natural interpretation of the theory, because it is virtually equivalent to a 
common cause model (Glymour, 2001). Representationalism works on observable 
relations between objects, and therefore has no place for the relation of validity: 
the very fact that we are supposed to be able to judge relations like ;not notice-
ably longer than' with the unaided eye, means that validity is presupposed in the 
model. However, upon closer inspection, representational measurement is strongly 
related to the requirement of experimental control; and this requirement cannot be 
considered to demand anything less than the possibility to intervene in a causal 
system. If the representationalist now drops the condition that relations between 
objects be 'noticeable', which is unrealistic in the first place, he turns out to have 
been hiding a latent variable model under the cloak of noticeability all this time. 
And if he reduces the demand for experimental control to the weaker demand that 
a causal relation between the attribute and its indicators hold, then he turns out 
to formulate virtually the same semantics of measurement as the latent variable 
theorist. 
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So. when we look upon these models in the context of validity, they converge to 
a surprising extent. As a prelude to the following chapter, I will now abstract what 
I think are good ideas from the different models. In my opinion, true score theory 
is wholly inadequate insofar as we are talking about measurement. It is a purely 
statistical theory on the behavior of (composite) random variables and, in the case 
of psychological testing, not a very plausible one. I think that latent variable theory 
has a reasonable philosophy of measurement. However, it places too much emphasis 
on technical requirements, such as unidimensionality. Unidimensionality is a good 
idea in itself because it has clear statistical implications, but I think that, in latent 
variable theory, it has come to occupy an unreasonably strong position. Strictly 
taken, unidimensionality is not a very realistic assumption to make when dealing 
with psychological test scores. The assumption appears moreover to be motivated 
by an, in itself understandable, desire to measure one thing at a time, rather than 
from a psychological theory that says why we should expect unidimensionality to 
hold in a particular testing situation. But the psychometrician's desires would not 
seem to be sufficient as a motivation for an assumption as strong as unidimension-
ality. The unidimensionality assumption could be motivated, however, by invoking 
a causal relation between variation on the latent variable and variation on its indi-
cators. In this case, one says that unidimensionality will hold if the causal relation 
between the latent variable and its indicators holds, if this relation is correctly spec-
ified, and if the latent variable is the only attribute that causes variation on the 
indicators. Unidimensionality can then be considered a specific instantiation of the 
common cause idea, and local independence is one of its testable consequences. The 
kind of causal relation I am envisioning does not require local homogeneity, for I 
am taking the position that one can reasonably say that variation on an attribute 
causes variation on the observed scores, without the attribute being a causally effi-
cient entity at the individual level. 

Representational theory makes some very strong points, but, being determinis-
tic, it is too restrictive. Moreover, requiring that we have full experimental control 
over the independent factors in additive conjoint measurement is too strict, because 
the possibility of experimental control depends on much more than a measurement 
relation. However, one may view the 'experiments' in representationalism as in-
terventions in a causal system. Such interventions are not always possible, but if 
they are impossible this does not imply that the causal relation is false. Thus, 
one may reasonably weaken the requirement that experimental control be possible 
to the requirement that a causal relation must hold. Now if one does this, one is 
unavoidably drawn to a realist position with respect to the attribute in question. 
That is, if one is to say that the attribute does causal work in producing variation 
on the measurement outcomes, one cannot hold that it is constructed out of these 
very same measurement outcomes. 

In conclusion, the two theoretical requirements that seem essential for validity 
are realism about the attribute in question, and a causal relation between variation 
on the attribute and variation on the measurement outcomes. This observation has 
serious consequences for the theory of validity. These consequences are the topic of 
the next chapter. 



6. THE PROBLEM OF VALIDITY 

6.1 Introduction 

That the conceptual problems inherent in measurement in general, and psycholog-
ical measurement in particular, are poorly understood is obvious from the lack of 
agreement on the meaning of the term 'measurement', the multitude of conceptually 
different models for implementing it (e.g., Lord & Novick. 1968; Cronbach, Gleser, 
Nanda, & Rajaratnam, 1972; Hambleton & Swaminathan, 1985; Krantz, Suppes, 
Luce, & Tversky, 1971), and the fact that no psychologist can point to a field where 
psychological measurement has succeeded without eliciting an immediate claim to 
the contrary from another psychologist. Given that virtually all aspects of the mea-
surement problem are the subject of ongoing debates (Borsboom & Mellenbergh, 
2002; Borsboom, Mellenbergh, & Van Heerden, in press; Lamiell, 1987; Lumsden, 
1976; Maraun, 1999; Michell, 1986,1999, 2000; Schmidt & Hunter, 1999), one would 
expect these debates to culminate in fierce discussions on the most central question 
one can ask about psychological measurement, which is the question of validity. It 
is therefore an extraordinary experience to find that, after proceeding up through 
the turmoil at every fundamental level of the measurement problem, one reaches 
this conceptually highest and presumably most difficult level only to find a tranquil 
surface of relatively widespread consensus (Kane, 2001; Shepard, 1993). In fact, 
this is not only surprising but slightly worrying, because validity is a largely philo-
sophical topic. Consensus on philosophical problems is rare, and for good reasons: 
Philosophy is the art of critical thinking and critical thinking generally does not 
lead to consensus but to debate. 

A second remarkable aspect of current validity theory is that the concept validity 
theorists are concerned with seems strangely divorced from the concept that most 
researchers have in mind when posing the question of validity. That is, most validity 
theorists have come to see the validity concept as embracing virtually every test-
related problem that may be raised (Cronbach, 1988; Messick, 1989; Shepard, 1993). 
while many researchers are under the impression that the problem of validity simply 
concerns the question whether a test measures what it should measure. Moreover, 
if one regards this simple question as legitimate and crucial, as I do, then one 
has a very hard time understanding most recent papers on validity. To give but 
one example that I find puzzling: One can find in Messick (1989: p. 30) the idea 
that some psychological attributes are real, while others are not, and that in both 
cases the concept of validity applies. I have great difficulty in understanding the 
supposition that one can ask what may be called the 'simple' question of validity. 
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which I construe as the question whether, for example, IQ-tests really measure the 
attribute we call 'intelligence', in a situation where there is nothing in reality that 
corresponds to intelligence. That is. if the realist position cannot be taken. I do not 
understand why the question of validity should apply at all. 

Now. when encountering philosophical positions that seem elusive and difficult 
to understand, one always faces a problem of attribution. In general, there are 
three possible sources of confusion, and it is often hard to decide which is at play. 
The first and least attractive possibility is that the confusion arises from one's own 
limited cognitive resources. The second is that there is a flaw in the position itself. 
And the third is that the authors in question are analyzing the wrong problem. 
I think that, in the present case, the third explanation applies. It is my intent 
to convince the reader that most of the validity literature either fails to articulate 
the validity problem clearly, or misses the point entirely. I will argue that it is 
an unfortunate historical accident that the validity concept has been divided into 
different kinds, torn from its rightful place in science, and reunified by constructing 
it as an umbrella term intended to cover virtually every thinkable aspect of inference 
- be it scientific, philosophical, political, or ethical. Validity is not complex, faceted, 
or dependent on nomological networks. It is a very basic concept and was correctly 
formulated, for instance, by Kelley (1927, p. 14), when he stated that a test is valid 
if it measures what it purports to measure. 

The argument to be presented is exceedingly simple: so simple, in fact, that 
it articulates an account of validity that may seem almost trivial. It is this. If 
something does not exist, then one cannot measure it. If it exists, but does not 
causally produce variations in the outcomes of the measurement procedure, then 
one is either measuring nothing at all or something different altogether. In these 
two cases, a test does not possess validity. In all other cases, it is valid. Thus, a 
test is valid for measuring an attribute if and only if a) the attribute exists, and 
b) variations in the attribute causally produce variations in the outcomes of the 
measurement procedure. Now, one may find this unsurprising. In fact, there is a 
good chance that many readers are inclined to respond that they tell their students 
this all the time. However, in the validity literature of the past two decades, it is 
difficult to find a explicit formulation resembling the above. In the writings of lead-
ing theorists (i.e., Cronbach, 1988; Kane, 2001; Messick, 1981, 1989, 1998; Shepard, 
1993), one will not find much that sustains it; rather, one is likely to find this type 
of idea in a discussion of historical conceptions of validity (Kane, 2001, p. 319-323). 
The ontological part of Messick's (1989; 1998) unificationist conception of validity 
leans towards it. but it is not clearly articulated and it is questionable whether it 
is consistent with the other, epistemological, part of his synthesis (Markus, 1998). 
Moreover, Messick (1989. p. 13) views validity as a judgment, and thus conceptual-
izes the term as applying primarily to the evaluation of evidence bearing on that 
judgment. Similar views are put forward in Kane (1992), Shepard (1993), and Moss 
(1992). In keeping with this idea, the current literature conceptualizes validity as 
applicable to test score interpretations only (Cronbach, 1988; Kane, 2001; Messick, 
1989), while the conception stated here is consonant with the older conception that 
it is a property of tests. Indeed, finding similar conceptualizations requires brows-
ing some of the older archives (e.g.. Kelley, 1927; Cattell, 1946; Loevinger, 1957). 
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However, these treatises are not based on a causal, but on a correlational concep-
tion of validity, which I will argue is crucially mistaken. In latent variable theory, 
one may find causality based lines of reasoning (Bollen & Lennox, 1991; Bollen & 
Ting, 2000; Edwards & Bagozzi, 2000). but they will not be explicitly linked to 
validity theory. It thus seems that the validity concept, as formulated above, has 
not been explicitly proposed in the literature, although it certainly has been hinted 
at (Cattell, 1946; Loevinger, 1957; Campbell, 1960). An observation that under-
scores the apparent novelty of the stated conception is that it contradicts most of 
the conventional wisdom in validity theory, which means that this theory either 
does not sustain it, or is inconsistent, or both. For example, the above conception 
implies that a) validity is not a matter of degree, b) the square root of the relia-
bility coefficient is not the upper limit of validity, and c) unreliability, item bias, 
and other supposedly undesirable characteristics of tests bear no direct relation to 
validity. This is in contradiction with every paper on validity I know, but I think 
it is correct. 

The aim of the present chapter is to elaborate the implications of this view, and 
to discuss the ways in which it diverges from, or converges with, both historical 
and current conceptions. The argument will focus on four points where validity 
theory seems to have taken the wrong turn. First, it has confused ontological 
and epistemological claims; second, it has mistaken questions about reference for 
questions about meaning; third, it has been plagued by a correlational account 
where there should have been a causal account; and fourth, the idea that validity 
applies to test score interpretations, rather than to tests, is inadequate. Finally, it 
will be argued that current validity theory deals with too many issues at the same 
time, so that it collapses under its own weight. It is proposed that the question 
of validity must be taken to apply only to the question whether one is measuring 
the right attribute; not to the question how well one is measuring that attribute. 
This latter question is left to the technically oriented psychometric literature, which 
deals with it in a more sophisticated way than the validity literature. 

6.2 Ontology versus epistemology 

If the crucial issue in validity concerns the existence of an attribute that causally 
influences the outcome of the measurement procedure, then the central claim is 
ontological, and not epistemological. This is to say that one is claiming something 
about which things inhabit reality, and what they are doing there. Such claims 
are about ontology, and as such they are conceptually distinct from the ability to 
find out about reality, which is the central issue in epistemology. Measurement, of 
course, is the prototypical epistemological activity in science, and it is therefore easy 
to make the mistake that we are primarily claiming something on this front. This is 
because if the ontological claim holds, then the measurement procedure can be used 
to find out about the attributes to which it refers. Put more simply: If differences 
in intelligence cause differences in IQ-scores, then the IQ-score differences can be 
used to find out about the intelligence differences. Thus, in this very special case, 
the truth of the ontological claim guarantees the epistemological access. 
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It would seem, then, that to talk about the ontology is to talk about the epis-
temology, and there surely is a sense in which this is correct. Now it is a small 
step to conclude that, instead of laying down our ontological claims, which make 
so abundantly clear what kind of radical assumptions we are making (Borsboom. 
Mellenbergh, & Van Heerden, in press; Michell. 1999), we could just as well limit 
our discussion to the epistemological side of the endeavor, which is respectable and 
familiar. It is another small step to conclude that the question of validity is about 
particular aspects of this epistemological process we call measurement. The final 
step leading to some very dark philosophical dungeons from which escape is im-
possible, is to start talking about some presumed universal characteristics of this 
epistemological process (usually derived from a few paradigm cases like length or 
temperature measurement) that, if present, would allow one to somehow be ratio-
nally justified in concluding that the ontological claims are true. 

This, of course, will not work. The family of procedures, that scientists - as 
opposed to philosophers - regard as instances of measurement, is diverse and inco-
herent and does not have universal characteristics. Length and temperature, blood 
pressure and brain size, pathology and intelligence all could be said to involve mea-
surement, but the associated measurement practices are based on vastly different 
lines of reasoning and employ vastly different methodologies. So now one gets into 
trouble. What on earth could it be that this heterogeneous set of successful mea-
surement procedures has in common? Is it the way the test looks? Representative 
sampling from a universe of behaviors? The line of reasoning on which it is con-
structed? The correlation between a test and some external variable called the 
'criterion'? The (presumed) fact that the test figures in a 'nomological network' of 
'constructs' ? Or is it just that we can do something 'useful' with regard to some 
'purpose' which is presumably different from measuring the hypothesized attribute? 
Or are we on the wrong track here, because what is important is not a character-
istic of tests or test scores, but of test score interpretations - which are, again, 
presumably different from the obvious ones like 'IQ-scores measure intelligence' ? 

This line of reasoning quickly gets us nowhere. The reason is that there are no 
universal characteristics of measurement, exceptthe ontological claim involved. The 
only thing that all measurement procedures have in common is the either implicit or 
explicit assumption that there is an attribute out there that, somewhere in the long 
and complicated chain of events leading up to the measurement outcome, is playing a 
causal role in determining what values the measurements will take. This is not some 
complicated and obscure conception but a very, very simple idea. If we, however, fail 
to take it into account, we will end up with an exceedingly complex construction 
of superficial epistemological characteristics that are completely irrelevant to the 
validity issue. And because the measurement processes and models are diverse 
and complicated, we are likely to buy into the mistaken idea that the concept 
of validity must also be complicated. So now we get a multiplication of terms. 
For the human condition is such that someone will inevitably distinguish between 
'kinds of validity' and 'degrees of validity' and so we are bound to come up with 
a hundred or so •validities', which all come in "degrees', until someone stands up 
because this is clearly ridiculous, and claims that 'all validation is one' (Cronbach, 
1980, p.99) so that all kinds of validity can be integrated and subsumed under 



6.2 Ontology versus epistemology 131 

one giant umbrella (Messick. 1989). And since we are now thoroughly convinced 
that we are concerned with characteristics of an epistemological process rather than 
with an ontological claim, we are going to reach the conclusion that all this time 
we were really just talking about the one grand epistemological process - scientific 
research (Cronbach & Meehl, 1955; Loevinger, 1957; Messick, 1989). However, 
given that every attempt at drawing a line between 'scientific' and 'unscientific' 
research either fails or duplicates the distinction between good and bad research, 
we have now discovered the exciting fact that validation research is research. In 
other words, we have discovered nothing at all. And the reason for this is that there 
was nothing to be discovered in the first place. 

When claiming that a test is valid, one is taking the ontological position that 
the attribute being measured exists and affects the outcome of the measurement 
procedure. This is probably one of the more serious scientific claims one can make, 
and it is difficult to prove or refute it. This, however, does not mean that the validity 
concept itself is complicated. Every test constructor in every scientific discipline 
has the stated line of reasoning in mind when she is constructing, administering, 
or interpreting a test. It is the only aspect that measurement procedures have in 
common. If one is going to search for homogeneity in the superficial characteristics 
of these procedures one is not going to find any, and one is likely to build ever 
more complicated systems covering different 'aspects' of validity. These systems, 
however, do not cover different aspects of validity but describe different research 
procedures for validation. So 'asking people what they think about the test' becomes 
'face validity'; 'checking whether we can predict some interesting things with it' 
becomes 'predictive validity'; 'investigating whether the data fit our theory about 
the attribute' becomes 'construct validity'; and so on. 

Turning verbs into nouns often leads to understandable classificatory systems 
but when doing philosophy one does well to stay clear of it. For the union of all 
possible test related activities of this kind is not validity, but validation. These 
terms are sometimes used interchangeably in the literature, but they are not the 
same. This is clear from the fact that validity is a property, while validation is 
an activity. In particular, validation is the kind of activity we undertake to find 
out whether a test has the property of validity. Validity is a concept like truth; it 
represents an ideal or desirable situation. Validation is more like theory testing; the 
muddling around in the data to find out which way to go. Validity is about ontology; 
validation is about epistemology. The two should not be confused. Now, I think that 
most of the validity literature has not dealt with the problem of validity, but with 
the problem of validation. While there is nothing wrong with describing, classifying. 
and evaluating validation strategies, such activities are not likely to elucidate the 
concept of validity itself. In fact, if one concentrates on the epistemological problems 
long enough, one will move away from the validity concept rather than towards it. 
Consider, for example, Messick's (1989) widely cited definition of validity: 'validity 
is an integrated evaluative judgment of the degree to which empirical evidence 
and theoretical rationales support the adequacy and appropriateness of inferences 
and actions based on test scores or other modes of assessment' (p. 13: italics in 
the original). No view could be farther apart from the one being advanced here. 
Validity, in the present conception, is not a judgment at all. It is the property being 
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judged. 

6.3 Reference versus meaning 

That the position taken here is so at variance with the existing conception in the 
literature is largely due to the fact that I have reversed the order of reasoning. 
Instead of focussing on the epistemological processes and trying to fit in existing 
test practices, I have started with ontological claims, and I derive the adequacy of 
epistemological practices only in virtue of their truth. This means that the central 
point in validity is one of reference: The attribute to which the psychologist refers 
must exist in reality, otherwise the test cannot possibly be valid. The position here 
is thus a strongly realist one, in that I construct measurement as involving realism 
about the measured attribute. This is because I cannot see how the sentences 'Test 
X measures the attitude towards nuclear energy' and 'Attitudes do not exist' can 
both be true. If you agree on this point, then you are in disagreement with some 
very powerful philosophical movements which have shaped validity theory to a large 
extent. 

One particularly strong variant of these movements once proudly went by the 
name of logical positivism. Philosophers and scientists endorsing this theory saw 
it as their mission to exorcise all reference of theoretical terms (like 'attitude'), 
because such reference introduces metaphysics, which the logical positivists thought 
was bad. They therefore constructed theoretical terms as nonreferential. This lead 
them to focus on the meaning of theoretical terms. Meaning and reference are easily 
confused, but are very different concepts. To give a classic example (Frege, 1892), 
'the morning star' and 'the evening star' have different meanings (namely 'the last 
star still to be seen at morning' and 'the first star to be seen at evening'), but refer 
to the same thing (namely the planet Venus). Because the positivists had a slightly 
phobic attitude towards metaphysics, they wanted to explain the use of theoretical 
terms like 'attitude' without letting these terms refer to reality. 

This was an interesting endeavor but it failed (see Suppe, 1977, for a good 
overview). However, one of the relics of the approach has plagued validity theory 
to this day. This is the nomological network. A nomological network is a kind of 
system of laws relating the theoretical terms to each other and to the observations. 
For the positivists, this network served to create meaning without reference for 
the theoretical terms. The idea is that the meaning of a theoretical term is solely 
determined by the place of that term in the nomological network: the meaning 
of the term 'energy' is fixed by the network and by nothing else - certainly not 
by a reference to actual energy. Thus, in this view we can have meaning with-
out reference, and can invoke theoretical terms without automatically engaging in 
ontological claims, which always introduce a lot of metaphysics. 

This idea was used by Cronbach & Meehl in 1955 to put forward their idea 
of 'construct validity'. Many people think that construct validity is the same as 
the kind of validity being proposed here, but this is not the case. The construct 
validity position does not invoke reference (it does not say that the attribute to be 
measured should exist), and it does not talk about causality (it is not necessary 
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for the attribute to have a causal role in determining the measurement outcomes). 
The classic position, as articulated by Cronbach & Meehl (1955), holds that a test 
can be considered valid for a construct, if the empirical relations, in which the test 
stands to other tests, match the theoretical relations, in which the construct stands 
to other constructs. One can imagine this as two path models, one hovering over the 
other. One model stands for theoretical relations, the other for empirical relations. 
If the models match, then there is 'construct validity' for test score interpretations 
in terms of the nomological network. For instance, suppose the nomological network 
says that the construct 'intelligence' is positively related to the construct 'general 
knowledge' and negatively to the construct 'criminal behavior'. Further suppose 
that one observes a correlation of .5 between an IQ-test and a test for general 
knowledge, and a correlation of -.4 between the IQ-test and the number of months 
spent in prison. There is thus a match between empirical and theoretical relations. 
In construct validity theory, it is this match that constitutes and defines the validity 
concept. 

To define construct validity, no reference to the existence of theoretical entities 
is necessary, and their causal impact on the measurement outcomes is not even 
a topic of discussion. Read Cronbach & Meehl (1955) to see how carefully they 
avoid this issue. As an illustration of the ambiguity of Cronbach & Meehl's (1955) 
paper, one may confer Bechtold (1959) and Loevinger (1957), who both discuss 
construct validity, but are talking about two completely different interpretations 
of the concept - one positivist, the other realist. In principle, however, within 
the construct validity perspective there is no friction between 'Test X measures 
the attitude towards nuclear energy' and 'Attitudes do not exist'. As long as the 
empirically observed relations, between test X and other tests, match the theoretical 
relations in the nomological network, all is fine. So, this view has a little bit in it 
for everyone. 

The problem, of course, is that we have few if any nomological networks in 
psychology that are sufficiently detailed to do the job of fixing the meaning of 
theoretical terms. To fix this meaning requires a very restrictive nomological net-
work. The reason is that the theory that has to be invoked for construct validity 
to work is an account similar to the descriptive theory of meaning (Kripke, 1972). 
This theory does not say 'intelligence is a real attribute with causal impact on our 
measurements', but 'intelligence is whatever has the relations to other constructs as 
specified in the nomological network'. Cronbach & Meehl (1955) do not mention the 
descriptive theory of meaning, but that they rely upon it is evident from statements 
like 'a construct is defined implicitly by a network of associations or propositions 
in which it occurs' (p. 299-300). It is crucial for the ideas formulated in Cronbach 
& Meehl (1955) that a descriptive account of meaning is possible, because other-
wise one is forced to invoke a reference for intelligence, which brings in the very 
metaphysics to be avoided through the back door. 

In some highly developed theories, like the ones in physics, one could at least 
begin to consider this account, because they are restrictive enough to single out one 
particular theoretical term, which is the only one that has all the right relations. 
In psychology, such an account does not work because we do not have the required 
theories. That this is not just an academic point, but a decisive argument against 
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using a descriptive theory of meaning can be immediately seen by considering the 
intelligence example discussed before. One does not get anywhere by saying that 
'intelligence is whatever is positively related to general knowledge and negatively to 
criminal behavior', because there are too many theoretical terms that will satisfy 
this description, and many of them will evidently not be the same as intelligence. No 
theoretical term in psychology can be unambiguously identified in this way. Thus, 
this theory will not be able to single out theoretical terms by merely describing 
where they stand in a nomological network. Cronbach & Meehl (1955) do discuss 
the problem that nomological networks are incomplete and vague in psychology, 
but they do not mention the most important implication of that problem: It is 
fatal to any positivist reading of their account, because it shows that reference, and 
the accompanying realist metaphysics of measurement, cannot be avoided. Instead, 
they conclude that it leads to vagueness in the construct definitions. This is, of 
course, true, but not the primary problem. The primary problem is that too many 
theoretical terms will satisfy construct definitions of the kind Cronbach k Meehl 
(1955) are discussing (see also Rozeboom, 1960), and that therefore the theory of 
meaning they use fails to work. 

Now, this should not be regarded as a grave problem for psychology in general, 
because the descriptive theory of meaning is not a very good one anyway (Kripke, 
1972). Neither is there any particular problem about not having nomological net-
works, because one has to start somewhere - and the tight, lawlike relations that 
make up nomological networks are more likely to be the result of research than a 
prerequisite for doing it. However, one would expect psychologists to dismiss any 
account of validity, that requires the existence of nomological networks, as inade-
quate from the outset because when one thinks the matter through, such a theory 
would have very undesirable consequences. For example, some psychological tests 
certainly appear to be measuring something important, and one should be able 
to say that one thinks, suspects, or hypothesizes that IQ-tests validly measure in-
telligence even if one momentarily has no nomological network available to fix the 
meaning of the term -intelligence'. In a theory of validity that requires the availabil-
ity of nomological networks this is, strictly taken, impossible. Every psychologist 
should object to this; not only because the view is unduly restrictive but because 
it is completely inadequate. Validity does not depend, and has never depended, on 
the availability of nomological networks because it is not about meaning but about 
reference. 

In this context, it has been noted by validity theorists (Shepard, 1997; Kane, 
2001), that requiring the existence of a nomological network is unrealistic in psy-
chology. However, if one removes the nomological network from construct validity 
theory, one is left with very little indeed. In fact, dropping the nomological network 
leaves one without the heavily needed theory of meaning, and one is likely to be 
forced to introduce reference again, that is, to interpret the theoretical terms as 
referring to things out there in the world. I think that this is a plausible move, 
as will be evident, but the consequence is that the main idea of construct validity, 
as put forward by Cronbach & Meehl (1955), loses its bite. That is, if one rein-
troduces reference, then it is difficult to maintain that what constitutes validity is 
a match between empirical relations and theoretical relations. For this match is 
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now rendered a helpful epistemological criterion, which may be given a signalling 
function, but not much more. Thus, if there is a grave discrepancy between the 
theoretical and empirical relations, one knows that something is wrong somewhere; 
but this can hardly be considered news. If the theoretical and empirical relations 
match, this match does nothing more than corroborate the theory, to use a Pop-
perian term. The match is no longer constitutive of validity, however, because the 
reintroduction of the realist metaphysics forces one to shift back to reference as the 
primary defining feature of validity. 

The emphasis that is placed on the importance of ruling out alternative ri-
val hypotheses for corroborating data (Cronbach & Meehl, 1955; Messick. 1989) 
partly acknowledges this. One can readily see this by introducing the question to 
what hypothesis the alternative one should be considered a rival. Obviously, to 
the hypothesis that there is an attribute in reality that produces variation in the 
measurement outcomes. What, then, is to be seen as the defining feature of validity 
if not exactly the truth of that hypothesis? And if this is correct, then where does 
this leave the instrumentalist, positivist, and empiricist? Consider, for example, 
instrumentalism. This view does not invoke truth, but usefulness as the primary 
criterion for the adequacy of scientific theories and measurements. However, we 
are surely not seriously considering the idea that we have to rule out rivals to the 
hypothesis that intelligence tests are useful. The Wechsler Adult Intelligence Scale 
comes in a big heavy box, which is very useful to hit people on the head with, but 
the hypothesis that the WAIS is valid for inflicting physical injury is certainly not 
the kind of hypothesis we are interested in. Clearly, from the viewpoint of ruling 
out alternative hypotheses, the hypothesis that the test is useful is neither intended 
nor relevant, except for the very special hypothesis that it can be used to measure 
intelligence because intelligence produces variations in IQ-scores. 

In conclusion, a positivist or instrumentalist reading of construct validity re-
quires a descriptive theory of meaning which must invoke nomological networks. 
Cronbach & Meehl (1955) tried to construct an account of validity on this basis. 
However, the nomological network interpretation of construct validity is inadequate, 
as has been recognized in the literature. Dropping the nomological network from 
consideration simply means that one has to go back to a realist interpretation of 
psychological attributes. In a realist interpretation, however, the crucial issue is 
reference and not meaning. Therefore, a question like 'are IQ-tests valid for intel-
ligence?' can only be posed under the prior assumption that there does exist, in 
reality, an attribute that we designate when we use the term 'intelligence'; and the 
question of validity concerns the question whether we have succeeded in construct-
ing a test that is sensitive to variations in that attribute. 

6.4 Causality versus correlation 

Although construct validity theory is, in its original form, inadequate, it does rep-
resent a serious attempt to forge a validity concept that has an account of meaning, 
a function for theory, and that stresses the fact that there is no essential difference 
between validation research and research in general. Moreover, if one removes the 
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nomological network from consideration, replaces meaning with reference, and rein-
troduces the realist perspective, much of what is said in construct validity theory 
remains consistent and plausible. Also, the idea of construct validity was intro-
duced to get rid of the atheoretical, empiricist idea of criterion validity, which is a 
respectable undertaking because criterion validity was truly one of the most serious 
mistakes ever made in the theory of psychological measurement. The idea, that 
validity consists in the correlation between a test and a criterion, has obstructed 
a great deal of understanding and continues to do so. The concept continues to 
exert such a pervasive influence on the thinking of psychologists, because many 
are under the impression that construct validity is really criterion validity with the 
criterion replaced by the construct (this fallacy cannot be attributed to construct 
validity theorists, as is evident from the writings of Cronbach & Meehl, 1955; Kane, 
2001; and Messick, 1981, 1989). However, the inadequacy of this view does not 
depend on whether one views the criterion as a variable to be predicted from test 
scores, or as an 'infallible' measure of the theoretical construct to be measured, or 
as the theoretical construct itself. The crucial mistake is the view that validity is 
about correlation. Validity concerns measurement, and measurement has a clear 
direction. The direction goes from the world to our instruments. It is very difficult 
not to construct this relation as causal. Criterion validity employs correlation and 
similarity, where it should employ direction and causality. 

Of course, causality is a laden term, and many researchers seem afraid to use it. 
The platitude 'correlation is not causation' is deeply inscribed in the conscience of 
every researcher in psychology, and in the literature the word 'causes' is often re-
placed by euphemisms like 'determines', or 'affects', or 'influences'; in measurement, 
we see traits 'manifesting' or 'expressing' themselves. What is meant is that traits 
cause observed scores. It is perfectly all right to say this because hypothesizing 
a causal account does not mean that one interprets every correlation as a causal 
relation. This, again, is the epistemological side of the issue which remains as prob-
lematic as ever - although progress has been made in this respect, as is evidenced in 
the work of writers like Pearl (2000) as well as in the development of latent variable 
models. The primary power of causality lies in the theoretical opportunity to think 
directionally rather than in terms of similarity or correlation (see, for some good 
examples, Pearl, 2000; Glymour, 2001). Now, I insist that measurement is a causal 
concept, not a correlational one. and that validity is so too. To clarify this, it is 
useful to point out some absurdities to which any theory based on a correlational 
account of validity leads. The criticisms must be explicitly understood as applying 
not just to the criterion validity view, but to any view that does not invoke a causal 
arrow pointing from the attribute to the measurement outcomes. 

First, it has been observed by Guilford (1946) that the idea of criterion validity 
leads to the conclusion that a test is valid for measuring many things, as epitomized 
in his famous statement that a test is valid for anything with which it correlates. 
However, it can be shown that the set of zero correlations is a null set, which means 
that the likelihood of encountering a zero correlation in real life is exceedingly small 
(Meehl, 1978). and it has also been observed that in the social sciences everything 
tends to correlate with everything. Therefore, the upshot of any line of thinking 
that sees correlation as a defining feature of validity is that everything is, to some 
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degree, valid for everything else. This absurdity does not arise in a causal theory 
because it is not the case that everything causes everything else. 

Second, the idea has the unfortunate consequence of introducing degrees of 
validity: The higher the correlation, the higher the validity. The limiting case is 
the case where two variables correlate perfectly, which would imply perfect validity. 
That is, if one views validity as correlational, one is bound to say that if two 
constructs have a perfect correlation, then 'they are really the same construct under 
two different labels' (Schmidt & Hunter, 1999, p. 190). This is very problematic. 
For instance, suppose one is measuring the loudness of thunder. The readings will 
probably show a perfect correlation with the simultaneously measured intensity of 
lightning. The reason, of course, is that both are the result of the distance between 
one's position and the location of the electrical discharge in the clouds, and of the 
severity of the discharge. However, the loudness of thunder and the intensity of 
lightning are not the same thing under a different label. They are strongly related 
quantities, one can be used to find out about the other, and there is a good basis 
for prediction, but they are not the same thing. When one is validly measuring 
the loudness of thunder, one is not validly measuring the intensity of lightning for 
the simple reason that one is not measuring the intensity of lightning at all. The 
limiting case of the correlational view implies that perfect correlation is perfect 
validity, and this leads to the idea that deterministically related quantities are the 
same thing. This absurdity does not arise in a causal theory because variations in 
the intensity of lightning do not play a causal role in producing variations in the 
loudness of thunder. 

Third, the correlation is a population dependent statistic, that is, it is sensitive 
to the amount of variability in the attribute to be measured across populations. A 
well known instance is the attenuating effect of restriction of range in the presence 
of imperfect relationships between variables. Any correlational view must there-
fore hold that validity itself is by necessity variable over populations. Corrections 
for unreliability and restriction of range (Lord & Novick, 1968) are going to solve 
some of the trouble here but not all of it. In particular, there is one important, 
well-established case of valid measurement where the population dependence of 
correlations raises serious problems. This is the case of extensive measurement, as 
discussed in Chapter 4 (Campbell, 1920; Krantz, Luce, Suppes, & Tversky, 1971). 
This is very troubling because extensive measurement is more or less the paradigm 
example of measurement in general (Narens & Luce, 1986). In extensive measure-
ment, attributes are not defined solely with respect to individual differences between 
objects (as is the case in almost all instances of psychological measurement), but 
with respect to an empirical concatenation operation. In this case, it can be mean-
ingful to say that one is measuring one individual object (which is meaningless with 
interindividual difference variables). Now suppose we are measuring the length of 
rods, and that the measurement apparatus used is a meter stick. Further suppose 
that we are measuring without error. The correlation between the measurement 
outcome and the real length will be unity in most populations, as it should be. 
but there is an important class of populations where it will be zero. This is the 
population of rods of equal length. Therefore, we must conclude that, in this popu-
lation, the centimeter is not valid for measuring length. This is a strange result. In 
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extensive measurement, it is quite meaningful to say that all objects in such a sub-
population are, say, 4.2 feet long, and that this measurement is valid. In the causal 
account, this absurdity does not arise. This because causality is directional and 
conditional: The causal account says that, if there are differences in the attribute. 
then these will produce differences in the measurement outcome. However, if there 
are no differences in the attribute, no differences in the measurement outcomes 
are expected. This in no way precludes the validity of the measurement outcomes 
themselves, which is exactly as it should be. 

Correlations are epistemologically relevant because they are sometimes indica-
tive of causality, but they are not, and cannot be, constitutive of validity. I have 
dealt with the refutation of this view in somewhat greater detail than is perhaps nec-
essary, as criterion validity has been considered inadequate at least since Cronbach 
k Meehl's (1955) introduction of construct validity (Messick, 1989; Kane, 2001). A 
thorough refutation seemed important, however, because I am under the impression 
that many people, who do not subscribe to the criterion validity perspective, still 
have a correlational conception of validity - the only difference is that they have re-
placed the criterion with the construct itself. I propose that if attribute differences 
do not play a causal role in producing differences in measurement outcomes, then 
the measurement procedure is invalid for the attribute in question. Correlations are 
not enough, no matter what their size. Height and weight correlate about .80 in the 
general population, but this does not mean that the process of letting people stand 
on a scale and reading off their weight gives you valid measurements of their height. 
To state otherwise is to abuse both the concepts of measurement and of validity. 
In fact, I consider the very fact that a correlational view of measurement allows for 
this kind of language abuse as a fundamental weakness; and I suggest that any the-
ory of validity that sustains such absurdities should immediately be dropped from 
consideration. I hope I have convinced the reader that not just criterion validity, 
but any correlational conception of validity is hopeless. 

The causal view of validity is clearly very powerful in comparison to the correla-
tional one. I have not been able to find any implications of it that are remotely near 
the aberrant behavior of the correlational conception. However, conceptual power 
always comes at a price, and this price is usually paid in metaphysical currency. 
That is, I have put causality to work, but this comes at the cost of introducing a 
heavy assumption into the proposed conception of measurement. Is it plausible that 
this workhorse will ride in psychology? In the present context, the main danger is 
that the causal account may seem to be just too strict for psychological measure-
ment. There are measurement experts as well as psychologists who are under the 
impression that any causal account of psychological measurement is untenable. In 
particular. I anticipate the following argument. 

It may seem that I am proposing that, for instance, John's intelligence causes his 
IQ-score. This would require me to introduce an (at best) dispositional attribute 
as a cause. It is important to make clear that this argument does not apply. For 
if it did. it would not just be problematic but fatal to my position. However, 
the argument confuses the two distinct kinds of causal statements that have been 
discussed at length in Chapter 3. Specifically, the confusion arises from the singular 
use of the term 'intelligence'. This usage seems to imply that, for a particular 
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subject, intelligence plays a causal role in producing test scores. This would indeed 
be a flawed account because intelligence is not the kind of variable that can be 
unproblematically introduced as a process variable. Intelligence is an interindividual 
difference variable, and as such it does not apply at the level of the individual. 
However, we do not have to assume that intelligence works at this level, because 
IQ-scores are not intended to measure intelligence in this way. Rather, differences 
in IQ-scores are intended to measure the effect of differences in intelligence. And 
in this sense, the causal account surely can be set up. 

Thus, we do not have to suppose that intelligence causes IQ-scores in order 
to claim validity; we merely have to suppose that differences in intelligence cause 
differences in IQ-scores, which is a much weaker claim. This claim is not refuted by 
an argument against the use of dispositions as causes. We may remain silent on what 
happens at the individual level; in fact, we do better to refrain from introducing 
intelligence as a cause there. Interpreted strictly in terms of differences, I do not 
think the causal link proposed here is untenable. In fact, it does not seem to be all 
that controversial. The bold statement 'intelligence exists' will give rise to extended 
discussions among measurement experts, intelligence researchers, and at birthday 
parties. However, the statement 'differences in intelligence exist' is unlikely to elicit 
more than a faint smile. Similarly, to claim that your intelligence causes your 
IQ-scores will elicit your denial, and rightly so. But is it really so extraordinary 
to suppose that differences in IQ-scores are causally determined by differences in 
intelligence, especially when one considers that such a proposal does not presuppose 
that intelligence differences are the only cause at work in producing the IQ-score 
differences? 

I think that such claims are not extraordinary at all, and that most measurement 
practices proceed along just this line of reasoning. In fact, as I have said before, the 
introduction of a causal line of reasoning is probably one of the few universals in 
measurement. Of course, latent variable models (Hambleton & Swaminathan, 1985; 
Bollen, 1989, 2002) explicitly incorporate this idea, because they can be viewed as 
common cause models (Reichenbach. 1956; Glymour, 2001). It may be less obvious 
that other approaches also take the causal stance, be it in a more indirect manner. 
For example, generalizability theory (Cronbach, Gleser, Nanda, & Rajaratnam, 
1972) is certainly amenable to this analysis. While the idea of tests as samples 
from a universe of behaviors is not an explicitly causal one, generalizability theory 
surely assumes that differences in universe scores lead to differences in domain 
scores; at that level, it is not at all difficult to introduce a causal relation between 
the two concepts. Similar accounts can be set up for most measurement practices 
and models. 

The only model that truly does not seem amenable to this analysis is the for-
mative model discussed in Chapter 3 (Bollen & Lennox. 1991; Edwards & Bagozzi. 
2000), because, in that model, the values of the attribute are determined by the in-
dicators rather than the other way around. However, I do not see this as a problem 
because the question, whether the weighted sum of the indicators 'salary', 'qual-
ity of neighbourhood', and 'educational level' yields a 'valid' measurement of SES, 
seems rather contrived in the first place. It may therefore be a good idea to call the 
formative model an instance of indexing rather than of measurement. Whether one 
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has the right indicators for an index variable would seem a matter of convention and 
usefulness rather than of validity. This does not preclude that there may be sound 
arguments for including some indicators and not others; but I think that these con-
siderations do not bear upon the question of validity. Of course, the question of 
validity may be raised at the level of the indicators (when one asks, for example, 
whether the question 'what is your annual income?' is a valid measure of annual 
income): but it does not apply at the level of SES because SES is not, properly 
speaking, measured but constructed. 

In conclusion, the causal conception of validity avoids the absurdities of a cor-
relational perspective because it is directional and conditional. So is measurement. 
And although it is true that the statement, that an attribute like intelligence causes 
the IQ-scores for an individual subject, is either meaningless or false, this argument 
does not pose a serious threat to the causal interpretation at hand. Like perception, 
measurement is about detecting variations, contrasts, and differences; and the only 
statement we need to make to claim validity is that the measurement instrument 
will detect the relevant variations, i.e., that variations in the attribute will cause 
variations in the test scores. Some reflection shows that this line of reasoning is not 
all that extraordinary, but underlies most or all measurement procedures; and it is 
certainly the case that most measurement models allow for this interpretation. The 
only model that does not sit well with this interpretation is the formative model. 
However, that this model is excluded from consideration in a validity context does 
not seem to be a problem for, but rather a virtue of, the present conception. This 
is because the formative model is, in my view, not a model for measurement but 
for indexing. It seems to me that a causal interpretation of validity is reasonable, 
and I propose it be considered in the literature. 

6.5 Tests versus interpretations 

Test theory abounds with unlucky terminology; some of the more infamous ex-
amples are 'true scores' (Lord & Novick, 1968; Borsboom & Mellenbergh. 2002). 
'admissible transformations' (Stevens, 1946: Lord, 1953), 'meaningfulness' (Suppes 
& Zinnes, 1963; Michell, 1986), and 'reliability' (Lord & Novick. 1968; Lumsden, 
1976; Mellenbergh, 1996). All of these terms indicate important concepts, but in 
every case the label is awkward, because it suggests an unintended meaning. It 
almost seems as if the one thing that measurement theorists have in common is the 
curious ability to flawlessly pick the one name for a concept that will guarantee its 
misinterpretation. And as is the case for most concepts in test theory, the term 
'validity' is not very well chosen. 

In particular, 'valid' is an adjective that may naturally be applied to arguments, 
statements, theories, and judgments, but to apply it to nonlinguistic entities like 
tests is to stretch the grammatical limits of natural language. Tests are instruments, 
they serve a purpose and may be useful in this respect, but to say that they are valid 
seems just as absurd as to say that they are true. Tests do not purport to measure 
anything, and neither do scores. It is us, the investigators, who desire to measure 
attributes; it is us who interpret the scores; and it must be us who present the 
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validity argument. Therefore, it can only be the test score interpretation (Cronbach 
& Meehl, 1955; Messick, 1989), or else the argument that justifies the interpretation 
(Kane, 1992; 2001). to which the adjective 'valid' may apply - but not the tests 
themselves. So the argument of modern validity theory goes. 

Although most of the steps taken in the above argument are based on plausible 
ideas, I do not find the argument very convincing on the whole. It is certainly 
true that to apply the term 'validity' to tests is not to use the term in a natural 
manner, but terminology is just a matter of convention and I cannot help it that 
this particular terminology has been introduced. It would be a good idea to change 
it, but history teaches that any attempt to change a term so deeply entrenched as 
•validity' is guaranteed to fail (Ebel, 1956, is an example in this context). It is, 
however, my conviction that the old fashioned way of using the adjective 'valid', 
which is to apply it to tests and not to test score interpretations, singles out a very 
important property of tests. And it is exactly this property that provides such a 
useful vehicle for saying that we have succeeded in measuring what we set out to 
measure. To ascribe to the test this property is meaningful and I am willing to 
defend this practice. The validity literature has taken the other option and has 
deserted this usage (and, in doing so, left almost the entire research community 
behind). It is now standard for a validity theorist to say that validity applies only 
to test score interpretations, with the possible extension to actions based on test 
scores (Messick, 1989). 

There are several reasons why this conception is not optimal. First, one can 
construct cases where a test score interpretation is valid but the test evidently 
is not. I have, for example, developed a new test. It is called the number test 
and contains one question. The question is 'write down a number between 70 and 
130'. I have the following interpretation for the scores: 'the test scores resulting 
from administering the number test do not measure any psychological attribute 
whatsoever'. I have done a number of studies that provide strong evidence for the 
validity of this interpretation. For example, it turns out that the test scores do 
not correlate with height, IQ, and extraversion. It seems to me that nobody can 
reasonably dispute that this interpretation of the scores on the number test is valid, 
and that the evidence strongly supports this conclusion. It also seems to me that 
nobody can reasonably dispute that the test is invalid; for it does not measure any 
interesting attribute whatsoever. It is thus sensible to say that the interpretation 
'the number test is invalid' is itself valid. This establishes that the validity of tests 
and the validity of test score interpretations are quite distinct topics. I think that 
the validity of tests is the topic of interest in psychological measurement. 

One may reply that this is an unfair example, because Cronbach & Meehl (1955), 
Messick (1989), and others meant their definitions to apply to a limited set of test 
score interpretations, and not to all such interpretations. But how are we to de-
termine which interpretations are eligible for consideration? I think that some 
reflection will show that there is basically just one class of interpretations in which 
we are interested. These are interpretations of the form 'test X measures attribute 
Y'. Maybe I am missing something here, but it seems to me that this gets us back 
to square one with a vengeance. For is not the only condition, that unambiguously 
sustains the validity of the interpretation 'IQ-tests measure intelligence', the con-
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dition that the proposition expressing this interpretation is true? But if this is the 
case, then the term 'validity', as applied to test score interpretations, turns out 
to do nothing more than the concept of truth was already doing (Borsboom, Van 
Heerden, & Mellenbergh, in press). That is, what prohibits us from saying that 
IQ-tests are valid for measuring intelligence if and only if the proposition 'IQ-tests 
measure intelligence' is true? And if I am correct on this score, then where does 
the concept of validity come in at the level of test score interpretations? 

The answer is that validity, as applied to interpretations, must be introduced to 
deal with the epistemological side of the question, and in fact cannot be introduced 
at any other level. We cannot know whether a test score interpretation is true any 
more than we can know whether quantumtheory is true, for we have no conclusive 
method of verification. However, what we can do is to evaluate the evidence and 
theory supporting the interpretation at hand. This is why Messick (1989), Kane 
(2001), and other theorists see validity as an evaluative judgment, and not as a 
property of tests. I have no quarrel with the importance of the evidential, theoret-
ical, and consequential issues involved here; but I seriously doubt whether we need 
to address epistemological issues when defining and delineating the validity concept. 
In this context, it is important to realize that epistemology is in a quite hopeless 
state at the present time: The stage is crowded with philosophers subscribing to 
relativism (Meiland, 1977), scientific realism (Devitt, 1991), constructive empiri-
cism (Van Fraassen, 1980), falsificationism (Popper, 1959; Lakatos, 1978), social 
constructivism (Latour, 1987), postmodernism (Foucault, 1970), and to smaller 
movements based on bootstrapping methodology (Glymour, 1980), logical relia-
bility (Kelly. 1996), problem solving (Laudan, 1977), computational approaches 
(Thagard, 1988), and game theory (Hintikka, 2001). No epistemological criteria for 
truth or validity are accepted by more than a handful of philosophers of science, 
and legitimate doubts can be raised as to whether such criteria can be found at 
all. Therefore, a definition of validity in terms of the quality of the argument put 
forward, or in terms of the evidence adduced, is unlikely to provide a firm foun-
dation for the concept. Moreover, once we turn to the epistemological side of the 
problem, we are in no position to claim that we are specifically discussing it with 
respect to psychological measurement. We are discussing the validity of interpreta-
tions in general. So, this is rapidly becoming a very ambitious project. For now we 
will have to find our way through the epistemological labyrinth that generations of 
philosophers have so carefully crafted - and given the nature of philosophers, the 
exit is likely to be missing. Do we really want to go there? 

I think that no such expedition is called for. In fact, I submit that the focus 
on test score interpretations, as opposed to tests, is yet another instance of the 
emphasis that validity theory has come to place on epistemology, where it should 
be concerned with ontology. An ontological framework that unambiguously defines 
what it means for a test to be valid need not be so complicated. I think that I am 
putting forward an adequate, and yet simple, proposal in this very chapter. The 
property of tests that we indicate with the admittedly infelicitous term 'validity' 
is just that variations in the attribute to be measured produce variations in the 
test scores. This is most certainly not a property of test scores or of test score 
interpretations. It is the test that does the job here, and it is the test to which 
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the property of validity should be assigned. The test functions as a gateway from 
the world to us, and if this gateway happens to convey the effect of variations 
in an intended attribute (like intelligence), and blocks the influence of many other 
attributes (like height, weight, extraversion, and so on), then that is the property we 
are interested in. I do not deny that the interpretation of test scores in theoretical 
terms is important, and there is a nontrivial sense in which modern validity theorists 
are justified in placing the emphasis here - namely, when one approaches the issue 
from an epistemological point of view. The argument put forward to convince 
other researchers that the test has the property of validity (Kane, 1992; 2001) is 
also important, and worthy of study in its own right. Likewise, the justification for 
using test scores in selection or placement is important; such justifications should be 
thoroughly scrutinized, and not just on scientific grounds (Messick, 1989). But not 
every important aspect of tests and test use is relevant to the validity concept. In 
fact, I think that most of the issues on which validity theory has focussed in recent 
years are not directly relevant to the concept of validity. Many of these concerns 
follow directly from shifting the emphasis from tests to test score interpretations. I 
think that this move is both unnecessary and inadequate. Validity should therefore 
be reconceptualized as a property of tests. 

6.6 Simplicity versus completeness 

The development of validity theory in the course of the 20th century shows a consis-
tent movement towards a greater scope for the concept. The original formulations 
were more or less technical in nature, stressing primarily the size of validity coef-
ficients. However, at least since the work of Cronbach & Meehl (1955), who made 
the concept depend on nomological networks, validity theory has aimed at com-
pleteness. I think that the concept should be kept as simple as possible. Validity 
is a central concept in psychological testing, but not in the sense that it embraces 
and incorporates every important consideration in test use. 

The most elaborate attempt to present a complete theory of validity that covers 
every aspect of tests is the treatise by Messick (1989). This theory is much too big 
to warrant a fair discussion here, but I would like to highlight some of the major 
difficulties I see in this kind of unified validity concept. In particular. I want to 
consider briefly Messick's progressive reading of his famous faceted conception of 
validity (Messick, 1989; p. 20-21). This reading suggests that scientific evidence, 
predictive utility, value implications, and social consequences add up to form a 
kind of total validity. In Messick's words, 'evidence of the relevance and utility of 
test scores in specific applied settings, and evaluation of the social consequences of 
test use as well as of the value implications of test interpretation, all contribute in 
important ways to the construct validity of score meaning' (Messick. 1989. p. 21). 
This seems to imply that, say, the use of IQ-scores in personnel selection could be 
approached through a maximization of the evidential basis, predictive utility, and 
social benefits of such use. While there may be cases where such maximizations 
are possible in the additive sense suggested by Messick, in many cases we will be 
faced with a trade-off instead. To make this point clear, I briefly discuss two cases 
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where the interests represented by the different cells of Messick's (1989) matrix will 
juxtapose each other, rather than align. 

Case 1: Measurement invariance, prediction invariance, and fairness 

First, consider the measurement versus prediction invariance paradox as discussed 
by Millsap (1997). The problem concerns the fact that equal regression lines across 
groups of, say, job performance on IQ, are generally inconsistent with the hypothesis 
that the same factor model underlies the IQ-scores in each group. This becomes 
especially problematic if groups differ in the variances of the latent variable (which 
will be the rule rather than the exception). In this case, if we have measurement 
invariance (no bias) across groups, then we will have unequal prediction slopes. 
If we have equal prediction slopes, however, we will have a test that violates the 
requirements of measurement invariance. Now suppose we are involved in a selection 
problem, say, we need to select people for access to an educational program in some 
medical specialization. Knowing the excellent predictive properties of IQ-tests, we 
decide to base the selection procedure on IQ-scores. Further suppose that we are 
selecting people from different ethnic groups. Obviously, we want the best people 
for the job; and at least from a public health perspective, this is surely in the best 
interest of society. This requires maximizing predictive utility. We also want to 
have a good scientific basis, which requires factorial invariance. Finally, we would 
like a fair and transparent selection procedure, which implies a rule like 'whatever 
ethnic group you belong to, if your IQ-score exceeds 120, then you are in'. Now, 
what strategy should we follow to jointly maximize construct validity, predictive 
utility, and fairness? 

It is immediately obvious that no such strategy exists. If we, for example, maxi-
mize construct validity, then we ought to use an unbiased measurement instrument, 
i.e., a test that shows factorial invariance over ethnic groups. If we also want to 
maximize predictive utility, then we ought to allow the predictive regression lines to 
differ over ethnic groups. However, if we now set a desired standard on the criterion 
(job performance), we will have to set a different cut-off score in each of the groups. 
But this would imply that a person from ethnic group A is selected if her score 
exceeds, say, 115 on the IQ-test, while a person from ethnic group B is selected if 
her score exceeds 120. This does not seem fair to us, and it certainly would not 
seem fair to the general public (in whose interest we are doing this - remember 
that the goal is to get the best people for the job). It would take a very good psy-
chometrician to explain this practice in court. On the other hand, if we select an 
instrument with equal regression slopes, we can jointly maximize predictive utility 
and fairness, but construct validity would have to suffer, because we would have 
to select a test that violates factorial invariance (i.e., a biased test). Finally, if we 
jointly optimize construct validity and fairness, by using a factorially invariant test 
but setting the same cut-off score for all applicants, we will have to give in on the 
predictive front, and our selection will not be optimal; in this case, we would not 
get the best doctors. Clearly, then, construct validity, predictive utility, and social 
consequences do not 'contribute' to the overall validity of the selection procedure, 
except for the fact that their interplay presents us with a difficult moral dilemma. 
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Case 2: Homogeneity in measurement is multicollinearity in prediction 

The conjunction of scientific concerns and issues of social consequences will give rise 
to paradoxical situations and moral dilemma's. This is because the goals of science 
and society often conflict. However, conflicting interests can also arise when no 
social consequences are in play. An interesting case concerns the problem of choosing 
between optimizing measurement or predictive properties of tests. It has often been 
suggested that these go hand in hand, and that optimizing validity will pay itself 
back through improved prediction. There are actually strong reasons to suspect that 
the opposite is the case (Lord & Novick. 1968, p. 332; Smits, Mellenbergh, & Vorst, 
2002). Optimizing measurement properties will, in general, lead to suboptimal 
predictive properties. More seriously, however, optimizing predictive properties 
will tend to destroy all measurement properties a test might have. 

Measurement is typically approached through latent variable models, such as the 
various item response theory models (Hambleton & Swaminathan, 1985) or common 
factor models (Jöreskog, 1971; Bollen, 1989). Inspecting the structure of any latent 
variable model will show that items that measure the same latent variable must be 
correlated. Now suppose that we want to construct a test to measure extraversion. 
When optimizing measurement properties, we will construct a homogeneous test, 
i.e., a test with correlated items. If we now were to use the test for prediction, this 
property, which is desirable from a measurement point of view, would translate into 
a problem from a prediction point of view. In essence, any set of items selected on 
the basis of measurement properties will show multicollinearity in prediction: The 
items will not add independently to the regression equation. Thus, focussing on the 
measurement properties by necessity leads to suboptimal predictive properties. 

On the other hand, if we focus on prediction instead of measurement, we will 
turn up with a completely different test. Suppose that we construct a test to max-
imally predict extravert behavior, for instance, the tendency to engage in group 
discussions. When optimizing this prediction, we are likely to select items that add 
to the regression equation independently. That is, we would avoid rather than pro-
duce multicollinearity, and therefore we would select uncorrelated items rather than 
correlated ones (Lord & Novick, 1968, p. 271). Optimizing prediction necessarily 
produces a set of items that add to the prediction equation independently of one 
another, and therefore such procedures are likely to select items that measure dif-
ferent things. This problem will occur even if we are selecting items for predicting 
a highly relevant behavioral domain. Thus, in selecting items on the basis of pre-
dictive criteria, we will produce a heterogeneous test and not a homogeneous one. 
And because all measurement models imply homogeneity, such models will hardly 
ever fit a test constructed for optimal prediction. The reason for this is that the 
selected items will not measure the same attribute, and therefore cannot possibly 
be valid for measuring one attribute. 

Measurement and prediction will, in general, not go hand in hand. In fact, they 
will work against each other. This trade-off occurs because the structure of the pre-
diction problem is simply radically different from the structure of the measurement 
problem. Optimal predictive properties imply suboptimal measurement proper-
ties, and optimal measurement properties imply suboptimal predictive properties. 
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Again, it is clear that we cannot have it all at the same time. 

Is validity a matter of degree? 

The above examples point to a serious problem for any 'overarching' conception of 
validity. Even such simple and commonplace problems as measurement and pre-
diction are not structured in a way that allows for a simultaneous maximization 
of desirable measurement and prediction properties. It is therefore impossible to 
improve a test on all the relevant fronts at the same time. There is no inherent 
problem about this, but a serious problem will occur when we couple these observa-
tions with the notion of an overarching validity conception that is supposed to come 
in degrees. That validity is a matter of degree has become more or less a dogma 
of construct validity. Cronbach & Meehl (1955, p. 290) state that 'the problem is 
not to conclude that the test "is valid" for measuring the construct variable', but 
that 'the task is to state as definitely as possible the degree of validity'. Similarly, 
Messick (1989, p. 13) writes that 'it is important to note that validity is a matter 
of degree, not all or none'. In view of the above examples, I doubt whether this 
view is adequate. 

What exactly does it mean to say that validity comes in degrees? It seems that 
a theorist who expresses this notion is saying that different tests, or test score inter-
pretations, can be ordered in terms of their validity. But how does this work? Can 
we say, for example, that the Stanford-Binet is more valid for measuring intelligence 
than the WAIS? This seems relatively unproblematic, but appearances deceive here. 
In particular, it is unclear how we should determine this degree of validity. We could 
imagine that, in a given population, intelligence produces a proportionally larger 
amount of the variance in WAIS scores than in Stanford-Binet scores. This may be 
taken to imply that the WAIS is now 'more valid'. However, the situation here is 
by no means inconsistent with, for example, the presence of a large biasing effect 
in WAIS scores. So we could easily have a situation where the WAIS has the larger 
portion of variance produced by intelligence, but where it is also seriously biased 
against, say, females. The Stanford-Binet may be more unreliable but unbiased. 
How are we to weigh these different merits in determining which test has the higher 
degree of validity? It seems to me that this will be quite difficult. Moreover, the 
problems are going to multiply very quickly if we now move to different domains 
of interest. What kind of argument would it take to say that the WAIS is more 
valid for intelligence than Eysenck's extraversion scale is for extraversion? To be 
honest, I do not have a clue. And although one could imagine a kind of 'validity 
score' for each test, which could be considered a weighted sum of desirable charac-
teristics (e.g., reliability, absence of bias, predictive utility, unidimensionality, etc.), 
the problem becomes insurmountable once we move to a comparison of tests which 
are intended for different purposes, such as measurement and prediction. 

The Minnesota Multiphasic Personality Inventory (MMPI), for instance, has 
been explicitly constructed with the objective of maximizing its predictive perfor-
mance with respect to clinical syndromes. The test could reasonably be said to 
exemplify a predictive instrument, rather than a measurement instrument. But 
how are we to determine whether the MMPI is more valid for predicting mem-



6.6 Simplicity versus completeness 147 

bership of various categories of mental disorders, than the WAIS is for measuring 
intelligence? This seems downright impossible. If we have two tests which were 
developed for the same objective, say, measurement, then we could at least imag-
ine a kind of weighted sum of desirable measurement characteristics (provided that 
we agree on these). But if we have two tests which were developed for different 
objectives, like measurement and prediction, we can no longer do this, because 
there are few if any characteristics which are desirable both in measurement and 
in prediction. Because the structure of the measurement and prediction problems 
are different, the desirable test characteristics and their relative importance will be 
different, and therefore we cannot construct a meaningful comparison. The tests, 
or test score interpretations, are incommensurable: Attempting to place them on a 
'validity scale' which comes in degrees is like trying to answer the question whether 
the U.S. baseball team is better at playing baseball than the Dutch soccer team is 
at playing soccer. 

Saying that validity is a matter of degree implies that one can order tests, or test 
score interpretations, in terms of their validity. Coupled with the desire to apply 
the label of 'validity' to all possible instances of test use or test interpretation, 
this proves to be very difficult, if possible at all. It is questionable whether tests 
that are constructed with different purposes in mind (measurement, prediction, 
selection, etc.) are scalable on their 'degree of validity', and to the best of of my 
knowledge no procedure for doing this has been proposed. I submit that no such 
procedure can be found at all, simply because of the fact that we are dealing with 
different problems. Now, the conception of validity proposed here is one concerned 
with measurement. Therefore, I wish to exclude tests designed for prediction or 
selection from consideration, except for the case where one is explicitly claiming 
validity in terms of measurement for such tests (which one is by no means forced 
to do). This does not mean I want to go back to the 'tripartite' scheme, which 
distinguished different kinds of validity (namely, content, construct, and criterion 
validity). I think that the question of validity is one of measurement and that, as 
a result, content and criterion validity are of relatively minor importance. Thus, 
I strongly endorse Messick's (1989) suggestion to consider these as questions of 
content relevance and coverage instead of 'content validity', and of predictive utility 
instead of 'criterion validity'. 

I differ in opinion, however, with respect to the question whether validity should 
incorporate all these aspects at the same time; I answer this question negatively. In 
particular, I see no reason to demand that a test, which is intended for prediction, 
should first be shown valid for measuring an attribute of interest. Thus, I do not 
endorse Messick's progressive reading of his validity matrix. Further, I consider the 
task raised by Cronbach & Meehl (1955), which is to state as precisely as possible 
the 'degree of validity', to be impossible. For a validity concept that comes in 
degrees requires an ordering of tests, or test score interpretations, with respect to 
their degree of validity. These tests and test score interpretations, however, will 
more often than not be incommensurable, so that it is meaningless to speak of 
their degree of validity. I think that most researchers realize this at some level or 
another, because nobody ever attempted to develop a construct validity coefficient 
to capture the implied ordering. Predictive utility does come in degrees, for the 
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simple reason that it is a direct function of the association between test scores and 
the variable to be predicted. Validity does not, because it is not a function of any 
such association. 

A simple concept for a simple question 

The desire to create a validity concept that comes in degrees seems to result from 
the fact that there are two questions, both important, that can be asked of any 
measurement procedure. First, one may ask: 'does the test measure the intended 
attribute?'. Second, one may ask: 'how well does the test measure the intended 
attribute?*. In my view, the first question can only be answered dichotomously: Ei-
ther differences in test scores are produced by variations in the attribute of interest, 
or they are not. The second question addresses the quality of the test, relative to 
several methodological concepts like reliability, measurement invariance, and uni-
dimensionality. This question is conditional: it is sensible to ask how well a test 
measures an attribute only if the test does indeed measure it. Thus, asking for an 
overall evaluation of the quality of the test presupposes its validity for the intended 
attribute. The question is whether we should intend to cover both questions with 
one concept. I think it is more sensible to restrict the meaning of validity to apply 
only to the question whether variation in test scores is produced by variation in 
the attribute we intend to measure, but not the question how well we measure it. 
This is a natural consequence of conceptualizing validity in terms of causality: In 
contrast to a correlation, a causal relation does not come in degrees. I prefer to 
leave the question how well a test measures an attribute to the various technical 
approaches that have been proposed in the psychometric literature. I thus divorce 
validity from various psychometric concepts that are explicitly concerned with the 
question how well we are measuring the attribute of interest, such as reliability, 
unidimensionality, and bias. 

Reliability Within the present conception, the problem of reliability is distinct 
from the problem of validity. The square root of the reliability coefficient is cer-
tainly not an -upper limit' for validity, although it does pose an upper limit for 
predictive utility. But predictive utility is irrelevant to the question of validity as 
I construe it. The test can be valid in a given setting (i.e., it measures what it 
should measure), but very unreliable. The traditional question, how much of the 
total variation in test scores is accounted for by the intended attribute, cannot be 
an issue of validity because it is dependent on the variation in the population. In 
a population where there is no variation in the attribute, none of the variation in 
the test scores is produced by variation in the attribute. As I have argued above, 
this does not preclude the test from being valid, because the present account of 
validity is causal, not correlational, and in saying a test is valid, one is saying only 
that variations in the intended attribute will produce variations in test scores if 
the attribute variations are present. Validity is a property of the test, and not of 
the scores, so it should not vary with populations - except for the fact that there 
may be populations in which the attribute does have causal relevance for the test 
scores, and populations where it does not. However, while reliability does not place 
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an upper limit on the validity of a test, validity does place a strong restriction on 
the applicability of the reliability concept. This is because reliability is an index of 
measurement precision (Mellenbergh, 1996). Thus, the question that reliability is 
concerned with is 'how precise are our measurements?'. Obviously, the entire notion 
of measurement precision presupposes that the test is valid: We cannot say that 
the IQ-scores measure intelligence with a certain precision, but that they do not 
measure intelligence. Reliability is not an upper limit for the 'degree of validity', 
but it is the case that invalidity prohibits any statement concerning the reliability of 
test scores. If a test is invalid, then the scores cannot reliably measure the attribute 
of interest, because they do not measure the attribute of interest at all. 

Unidimensionality A second question that is highly relevant to the question how 
well we measure the intended attribute, but not to the question whether we measure 
that attribute, is the concept of unidimensionality. No psychological test is unidi-
mensional in the sense that the test measures only one attribute in every imaginable 
situation. All psychological test scores depend on many attributes that, if they were 
to vary in a population, would cause variation in test scores. This is clear from the 
fact that we may always create a second source of variation in addition to the one 
we are studying, thereby creating multidimensionality. For instance, one may mea-
sure the genetic quality of seeds by recording the height of the grass they produce. 
This test is clearly valid because variations in genetic quality, if present, will pro-
duce variations in the height of the grass. But if a gardner has just mown half of 
the lawn, we will in addition measure the effect of his presence, which obviously 
also produced variation in the height of the grass. The reason is that the test is 
also valid for measuring the presence of lawn mowers: if there is variation in this 
presence (i.e., the lawn mower covers some areas, but not others), then this will 
produce variations in the height of the grass. 

Tests themselves are therefore always 'multidimensional' insofar as this term 
applies to tests at all. IQ-tests may be valid for intelligence; but they will certainly 
also be valid for dyslexia, motivation, and reading ability. What we must always do 
when we are trying to single out one attribute, is to secure that, in the population 
we are working in, there is no variation in other attributes. This means that we must 
ensure that these other attributes, for which the test is also valid, do not come into 
play. We may do this in two ways. First, by carefully selecting a population where 
we can assume zero variation on the other attributes that may cause variation in 
scores. For the intelligence example, this means that we should exclude people with 
dyslexia or impaired reading ability from consideration. Second, we can attempt 
to block the effects from other variables that may cause variation in scores. This is 
commonly done in personality tests, for example, by telling the subject that there 
are no correct or incorrect answers. In that case, we are trying to block effects from, 
say, variations in the tendency to answer in a socially desirable manner. Now, if we 
succeed in our attempt to exclude other causally relevant variables from operating, 
then we would expect the resulting scores to fit a unidimensional model. It is clear, 
however, that whether such a model fits is completely dependent upon our success 
in blocking effects of other variables. 
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It is also clear that we can use a test to measure different attributes in different 
situations. When we try to measure intelligence, it is important to ensure that 
systematic variation in other causally effective attributes is minimal. However, if 
variations in IQ-scores also depend on variations in dyslexia, this means that we 
could, in principle, also use a verbal IQ-test to measure dyslexia. This could be 
done by administering the IQ-test to populations that are homogeneous in all at-
tributes (including intelligence) except for dyslexia, or by blocking all other effects. 
Of course, this would be utterly impractical, and I am not recommending any such 
use of IQ-tests, but the conceptual point is clear: A test can be used, in principle, 
to measure any attribute that produces variations in the test scores. Unidimen-
sionality can be created, in a sense, by administering tests to populations that are 
homogeneous with respect to systematic variation in all attributes but the intended 
one, or by blocking the effects of all unintended sources of variation. However, a test 
can never be used to measure an attribute that does not causally produce variations 
in test scores. Thus, the relation between validity and unidimensionality is similar 
to the relation between validity and reliability: Unidimensional measurement of in-
telligence presupposes the validity of the test for intelligence, but validity does not 
- and cannot - presuppose unidimensionality. 

Bias The above comments are directly related to the problem of bias, or differential 
item functioning (Mellenbergh, 1989; Meredith, 1993; Millsap & Everson, 1993). 
Bias, like unreliability and unidimensionality, refers to the question how well we 
measure an attribute. In particular, it is concerned with the question whether there 
exist subpopulations which induce multidimensionality (Shealy & Stout, 1993). An 
intelligence test is biased against ethnic groups, for example, if the scores depend 
on an attribute different from intelligence (say, the familiarity with the English 
vocabulary), on which the ethnic groups score systematically lower. If the presence 
of bias is established, however, it is not established that the test is invalid. It is 
shown that the test is sensitive to variations in more than one attribute, but not that 
the test is insensitive to variation in the intended attribute. If the intelligence test 
in the above example is biased, this does not imply that the test does not measure 
intelligence; it may be that the test measures more than intelligence alone, or that 
it measures intelligence differently in the different groups (Borsboom, Mellenbergh, 
& Van Heerden, 2002-b). The presence of bias is thus not directly relevant to the 
question of validity as we have construed it here. This may sound counterintuitive, 
but it is in accordance with the technical formulation of item bias. This is because 
the formulation of bias involves an effect of the grouping variable on the expected 
item response, conditional on the latent variable (Mellenbergh, 1989; Meredith, 
1993). However, if no latent variable underlies the test scores at all, the concept of 
bias cannot even be formulated. Therefore, it seems that the formulation of bias 
presupposes validity, rather than that validity presupposes the absence of bias. 

Validity and psychometrics Validity, as it is conceptualized here, is thus the point 
of departure rather than of arrival. It is central to test development and use, but 
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it does not embrace all aspects involved in these practices. It is underlying rather 
than overarching, simple rather than complicated, and basic rather than unified. 
Psychometric approaches, which generally deal with the question how well we are 
measuring, cannot be considered to formulate necessary or sufficient conditions for 
validity because they presuppose validity. Therefore, it is plausible to separate the 
question whether we are measuring the right attribute from the question how well 
we are measuring that attribute. I think that validity theory should refrain from 
trying to answer both questions with a single concept; not only are they radically 
different - one is substantive, the other methodological - but, in the past century, 
the technical issues involved in assessing the latter question have been largely taken 
over by psychometric approaches. These approaches handle the questions involved 
in a much more sophisticated manner than conceptual treatments of validity could 
ever hope for. How precise we are measuring the attribute is a question for theo-
ries of measurement precision (Mellenbergh, 1996); whether we measure only one 
attribute is a question of unidimensionality (Hambleton & Swaminathan, 1985); 
whether we measure primarily one attribute is a question of essential unidimension-
ality (Stout, 1991); to what extent our measurements are unbiased is a question of 
measurement invariance (Millsap & Everson, 1993); and so on. If there is a function 
here for a unified validity concept employing degrees of validity at all, it would have 
to involve a method of translating these characteristics into a single number. How 
this should be achieved is, to my knowledge, unknown. And it is very interesting to 
see that psychometrics has not developed the need for a validity concept; while con-
cepts like measurement precision, unidimensionality, and invariance flourish, there 
is almost no psychometric literature which explicitly uses the validity concept itself. 
The reason for this is that validity theory has no business in psychometrics. Not 
because validity is irrelevant, but because the entire undertaking of psychometrics 
presupposes it. 

6.7 Discussion 

I have proposed a simple conception of validity that concerns the question whether 
the attribute to be measured produces variations in the measurement outcomes. 
This concept of validity is based on reference and causation, rather than on mean-
ing and correlation. As a result, it is an all-or-none property. Moreover, it is a 
property of tests, and not of scores or of test score interpretations. Although epis-
temological issues are central to validation, and consequential issues are central to 
test use, both are considered irrelevant to the concept and definition of validity 
itself. The conjunction of these theses produces a viewpoint that is almost diamet-
rically opposed to the currently endorsed conceptions of validity, which state that 
the concept applies to test score interpretations, that it depends on nomological 
networks or is at the very least theory-dependent, that it is complex and faceted, 
and that social, ethical, and political consequences are relevant to validity. I do not 
see the need for a 'unified' validity concept (Messick, 1989; Moss, 1992; Shepard, 
1993; Ellis & Blustein. 1991), because I think there is nothing to unify. 

Although the proposed validity concept may be dissonant with the current va-
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lidity literature, few of its ingredients are truly new. In particular, several related 
ideas have been put forward by a number of scholars in the previous century (e.g., 
Cattell, 1946; Campbell, 1960; Loevinger, 1957; Kelley, 1927; Popham, 1997). A 
realist reading of construct validity also comes very close to the conception pro-
posed here. In addition, I am under the impression that most researchers operate 
with a validity concept that is highly similar to the one I am proposing. It seems, 
however, that nobody has yet consistently followed through the consequences of a 
realist conception of psychological attributes for the concept of validity; and the 
emphasis on causality as opposed to correlation seems never to have been stressed. 
As I have argued in the present work, the consequences of such a conception are 
far-reaching, but the overall picture that emerges is consistent and fits the intuitive 
notions most researchers have about validity quite well. I therefore think that the 
proposed validity concept is a viable alternative to the current consensus in validity 
theory. 

The philosophical assumptions involved in the present conception are strong; 
stronger, perhaps, than in any previous discussion of validity. Therefore, it may 
be argued that, by invoking real entities and causal relations, I am engaging in 
metaphysical speculation. I concede this point, but it does not bother me. The 
very idea, that metaphysics and science are necessarily opposed, is a relic that 
stems from logical positivism; in fact, I think that science is the best way of doing 
metaphysics we know. To the hard-boiled empiricist, I reply that it is naive to think 
that any scientific theory can get off the ground without introducing an ontological 
picture of how the world works, which will always contain metaphysical ingredients. 
Given that this is the case, the metaphysics better be good. Other objections 
may come from the postmodern or social constructivist camp. An obvious one is 
the objection that psychological attributes are social constructions, and that I am 
engaging in an unjustified reification of such constructions. To this objection I 
reply that the position taken here is indispensable for rendering a coherent picture 
of measurement. It is an ontological attitude one has to take. 

To see this, consider the following example. We may measure the degree of 
aggressive behavior displayed by Donald Duck, Mickey Mouse, and Woody Wood-
pecker, by rating the number of aggressive acts in a randomly sampled five minutes 
of film. I am surely not going to deny that Donald Duck, Mickey Mouse, Woody 
Woodpecker, as well as their aggressive behavior are social constructions; but this 
is completely besides the point. The point is that, even in this highly contrived 
situation, the logic we are following is that differences between Donald Duck and 
Mickey Mouse in their universe scores of aggressive behavior will lead to differences 
between them in the five minutes of film we sampled. We are thus presupposing the 
existence of such a universe score, and we are also presupposing a causal relation be-
tween this score and the number of aggressive behaviors we have observed: If there 
are no differences in universe scores, then we expect no differences in the number of 
aggressive behaviors, but if there are, then we expect these to lead to differences in 
the number of aggressive behaviors. If we are going to measure something, then we 
will have to suppose its existence and causal impact. Whether that something is, 
in itself, more properly conceptualized as a construction or as some kind of natural 
phenomenon is irrelevant to this issue. 
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Although I have separated the ontological concerns in psychological measure-
ment, among which is validity, from the epistemological ones, which include val-
idation strategies, the present developments do have some relevance in the area 
of validation research. In particular, it seems that the emphasis on the role of 
constructs in theories, and their place in nomological networks, has prompted vali-
dation research to adopt what has been called a top-down strategy (Cervone, 1997). 
This basically comes down to the fact that much validation research is concerned 
with creating tables of correlation coefficients, and then checking whether these go 
in the right direction. While I do not deny the relevance of such macro-level rela-
tions, it would seem to me that the primary objective of validation research is not 
to establish that the correlations go in the right directions, but to offer a theoreti-
cal explanation of the processes that lead up to the measurement outcomes. That 
is, there should be at least a hypothesis concerning the causal processes that lie 
between the attribute variations and the differences in test scores. To use Embret-
son's (1983) terminology, validation should be concerned primarily with construct 
representation and only secondarily with nomothetic span. 

In this view, validation is not, and cannot be, a purely or even mainly method-
ological enterprise. This does not mean that methodological and psychometric 
techniques are irrelevant to validation research, but that the primary source for un-
derstanding how the test works must be substantive and not methodological. Thus, 
I consider it impossible to argue for test validity solely on the basis of a multi-trait 
multi-method matrix. Such a matrix is helpful, but I do not view a favorable ma-
trix configuration as constitutive of validity. What is constitutive of validity is the 
existence of an attribute and its causal impact on our scores. Therefore, if one 
does not have an idea of how the attribute variations produce variations in mea-
surement outcomes, one cannot have a clue as to whether the test measures what 
it should measure. No table of correlations, no matter how big, can be a substitute 
for knowledge of the processes that lead to item responses. The knowledge of such 
processes must be given by substantive psychological theory and cannot be based on 
methodological principles. There are certainly tests for which a considerable body 
of knowledge has accumulated in this respect. Examples of research in this direc-
tion are, for instance, the cognitive modeling approach in spatial reasoning tests 
(Embretson, 1994) and the latent class approach in the detection of developmental 
stages (Jansen & Van der Maas, 1997). I think we are more likely to find evidence 
of validity in such explicit attempts to model respondent behavior, than in tables 
of correlations. 

The upshot of this line of reasoning for test construction is also clear. Purely 
empirical methods, like those used in the construction of the MMPI, are very un-
likely to generate tests that can be considered valid measurements. This is because 
focussing on predictive properties will destroy, rather than enhance, measurement 
properties such as validity (note that this does not preclude that these tests may 
be highly useful for prediction). Thus, it seems that one has to start with an idea 
of how differences in attributes will lead to differences in test scores; otherwise the 
project of test construction is unlikely to generate tests that are valid for more than 
prediction. This may be one of the few instances where psychology may actually 
benefit from looking at the natural sciences. In the more exact quarters, nobody 
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starts constructing measurement instruments without the faintest idea of the pro-
cesses that lead to the measurement outcomes. And, interestingly, the problem of 
validity appears never to have played the major and general role it has played in 
psychology. These two observations may well be related: The concept of validity 
may never have been necessary because the instruments were generally set up based 
on an idea of how they would work. In that case, the question what it is, precisely 
that is measured, can simply be resolved by pointing to the processes that lead to 
the measurement outcomes. 

In contrast, the question what psychological instruments measure is generally 
not answered by pointing to the way the instruments work, but by pointing to the 
relation they have with other instruments. This way of working makes the question 
'what is measured?' a question to be answered after the test has been constructed. 
Thus, the contrast here is between a conception that sees validity as something that 
one puts into an instrument, and a conception that views validity as something to be 
discovered afterwards. Construct validity theorists have tended to construe validity 
as an empirical matter, that is, the question what is measured is to be answered by 
data. However, a century of experience with test construction and analysis clearly 
shows that it is very hard to find out where the scores are coming from, if tests are 
not constructed on the basis of a theory of item response processes in the first place. 
Therefore, I would like to push the proposed validity conception one step further, 
and to suggest not only that epistemological issues are irrelevant to validity, but 
that their importance may well be overrated in validation research too. A large part 
of test validity must be put into the test at the stage of test construction (see also 
Schouwstra, 2000), a stage of the testing process that has received little attention 
compared with the enormous emphasis that has been placed on test analysis. Thus, 
it is suggested here that the issue may not be first to measure, and then to find 
out what it is you are measuring, but rather that the process must run the other 
way. It does seem that, if one knows exactly what one intends to measure, then one 
will probably know how to measure it, and little if any validation research will be 
necessary. If this is correct, then the problem of validation research is not that it is 
difficult to find out what is measured; the problem is that it is difficult to find out 
what we intend to measure. 



7. APPENDIX A. 
FUNCTIONAL THOUGHT EXPERIMENTS 

Abstract 

The literature on thought experiments has been mainly concerned with thought 
experiments that are directed at a theory, be it in a constructive or a destruc-
tive manner. This has led some philosophers to argue that all thought ex-
periments can be formulated as arguments. The aim of this paper is to draw 
attention to a type of thought experiment that is not directed at a theory, 
but fulfills a specific function within a theory. Such thought experiments are 
referred to as functional thought experiments, and they are routinely used in 
applied statistics. An example is given from frequentist statistics, where a 
thought experiment is required to establish the probability space. It is con-
cluded that a) not all thought experiments can be formulated as arguments, 
and b) the role of thought experiments is more general and more important 
to scientific reasoning than has previously been recognized. 

7.1 Introduction 

It could be argued tha t all science begins with counterfactual thinking. For the 
most basic question of inquiry, 'why is the world as it is?', can only originate from 
the idea that the world could have been different. Tha t is, an explanation need only 
be considered if there are phenomena to be explained, and phenomena require ex-
planation only if they are not taken for granted. Not taking phenomena for granted 
requires one to consider the possibility tha t the world could have been different, 
which is only possible upon the consideration of counterfactual alternatives. This, 
in effect, means one has to perform a thought experiment - where a thought ex-
periment is loosely defined as a line of reasoning tha t proceeds from counterfactual 
premises. 

In the light of the importance of counterfactual reasoning and thought experi-
menting to such basic issues of inquiry, it seems somewhat surprising tha t the role 
of the thought experiment in science has for long been neglected by philosophers of 
science. Apart from the pioneering work of Mach (1905/1976), and a paper by Kuhn 
(1977), it has only been for the last decade tha t a considerable body of conceptual 
research has emerged on the thought experiment as a philosophical, mathematical , 
and scientific strategy (Brown, 1991: Horowitz & Massey, 1991; Sorensen, 1992: 
Wilkes, 1988). 
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One of the most clarifying achievements in this emerging body of literature is 
the taxonomy proposed by Brown (1991). He classifies thought experiments as 
being destructive (aimed at refutation of a theory), constructive (providing support 
for a theory), or platonic (destructive for all theories but one). An example of a 
destructive thought experiment is Einstein's refutation of Maxwell's theory of light. 
Einstein reasoned that, if Maxwell's theory were correct, he would have to see a light 
beam as a spatially oscillatory electromagnetic field at rest, when running at the 
speed of light. The thought experiment is destructive, because it is used to derive a 
contradiction from the premises of Maxwell's theory. An example of a constructive 
thought experiment is the silicon-brain experiment, in which it is argued that, if 
all the neurons in your brain were gradually replaced by computerchips, you would 
still be conscious after the replacement. This thought experiment has been used as 
an argument for functionalism by various philosophers (see, for example, Dennett, 
1991). Finally, an example of a platonic thought experiment is Galileo's famous 
refutation of Aristotle's theory of motion. Aristotle's theory stated that heavier 
objects fall with greater acceleration than lighter objects. Galileo reasoned that, if 
Aristotle's theory were true, a heavier object tied to a lighter object should, when 
falling from a given height, simultaneously reach the ground sooner and later than 
the heavier object alone. This thought experiment is platonic in the sense that it 
does not only refute Aristotle's theory, but at the same time establishes a single 
alternative theory, namely the theory that acceleration does not depend on the 
mass of an object. Platonic thought experiments may therefore be conceived of 
as destructive thought experiments that are constructive for a single alternative. 
The majority of thought experiments that have thus far been considered in the 
literature can be classified in Brown's taxonomy, a possible exception being what 
Bunzl (1996) has called the consistency thought experiment. The essential feature 
of consistency thought experiments is that 'typically, such thought experiments 
result in a modification of background assumptions rather than any change in the 
theory itself' (p. 234). An example is the Einstein-Podolsky-Rosen (EPR) thought 
experiment, which eventually did not serve to refute or support quantum mechanics, 
but resulted in a modification of our background assumptions. 

All thought experiments that have thus far been considered in the literature 
are of the type that is directed at a theory, be it in a constructive or a destructive 
manner (notwithstanding the fact that consistency thought experiments do not 
result in a modification of the theory, the EPR thought experiment was clearly 
directed at quantum theory). This has led some philosophers, such as Norton 
(1991), to claim that all thought experiments can be formulated as arguments. The 
aim of the present paper is to draw attention to a type of thought experiment that 
is not directed at theories, and therefore cannot be formulated as an argument, 
nor subsumed under Brown's taxonomy. These thought experiments may best be 
characterized as functional, in the sense that they create a conceptual framework 
that allows for the application of a theory. A functional thought experiment that we 
will consider in some depth is employed routinely in the application of frequentist 
statistics in order to establish a probability space. As such, it plays an important 
role in frequentist statistics as well as in the areas where statistics is applied. Before 
we discuss the characteristics of the thought experiment, we will shortly scetch the 
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frequentist conception of probability, and illustrate the problem by an example 
drawn from the theory of mental testing. 

7.2 The Frequentist Conception of Probability 

It is not extremely difficult to provide a syntax for probability theory in the form of 
a calculus. Axiomatized systems have, for example, been provided by Kolmogorov 
(1933) and Rényi (1970). However, the interpretation of the probability syntax 
is not straightforward, and to some extent arbitrary. Several interpretations have 
survived up to this day (see Nagel, 1939, or Fine, 1973, for an overview of possible 
interpretations). The most influential interpretation of probability in applied statis-
tics is the so-called frequentist account, which is in terms of long run frequencies. 

The frequentist's long run interpretation of probability is seemingly uncompli-
cated. Toss a coin infinitely many times, and the limiting value of the relative 
frequency of heads in these trials is the probability of heads. For many applications 
it is important that these trials satisfy an independence condition. It is, however, 
not easy to specify what 'independent' means before probability itself has been de-
fined. We cannot use the concept of probability to define the independence of trials, 
because probability itself is defined in terms of these trials. Hacking (1965) escapes 
the vicious circle by deducing the independence of trials from the independence of 
the outcomes of these trials. Following Hackings brand of frequentism, one requires 
that the trials are 'unrelated' and defines the probability of an outcome as the rel-
ative frequency of that outcome. Then the concept of probability can be applied to 
define the statistical independence of the outcomes, from which the independence 
of trials themselves can be deduced. 

The definition of probability as the limit of a relative frequency in an infinitely 
long run of independent observations yields a very general framework for the ap-
plication of the probability calculus. Its general applicability, together with its 
'objective' character, have made the frequentist conception the most widely held 
view in applied statistics. 

7.3 The Imaginary Long Run: Lord & Novick's Brainwash 

The frequentist idea of probability as relative frequency in the long run is, upon 
closer examination, problematic. It is certainly intuitively plausible for games of 
dice, but it is not at all straightforward for many areas in which statistics is needed, 
and indeed has proven successful. We will illustrate this statement by an analysis 
of the problem as it occurs in mental testing, because it clarifies what the problem 
with the long run actually is. 

In the theory of psychological testing, a basic assumption is that observed test 
scores contain measurement error. A subject's score on a psychological test will be 
influenced by factors that are not of interest to the researcher. Some of these are 
systematic (to be understood as stable over time, for example, certain personality 
characteristics), and some are random (i.e., accidental, for example, the subject 
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had a headache at the testing occasion). Here, we will be concerned only with the 
random par t of the error. 

The basic idea of classical test theory (Lord & Novick. 1968) is tha t there exists 
a ' t rue score', which is to be conceived of as the observed score, stripped of its 
random error. The true score t is thus defined as the observed score X minus the 
random error E. This leads to the classic equation X = t + E. Of course, this 
definition is empty unless some procedure is specified to define what error actually 
is. This procedure is borrowed from the theory of random errors as developed in 
astronomy (Edgeworth, 1888; see also Stigler, 1986, and Hacking, 1990). The idea 
is tha t , if we take measurements on many occasions, it is plausible to define the 
t rue score as the expectation of the observed scores over repeated measurements, so 
tha t t = £(X). This is unproblematic in the context of astronomical measurements, 
where the repeated observations can reasonably be assumed to be independent (in 
the sense of the previous section). Consequently, the frequentist conception of 
probability as long-run relative frequency can be utilized. It is then reasonable to 
define the true score as the expectation over repeated observations, which is, by its 
definition, a constant. 

This line of reasoning fails in psychological testing. Disregarding the fact tha t 
performing many measurements on the same subject is unrealistic, people learn, 
get tired, become familiar with the testing procedure, and so on. As a consequence, 
trials are not unrelated and the outcomes of the trials will not, in general, be 
independent. So, Hacking's (1965) method of deducing the independence of trials 
from the independence of outcomes does not work here. However, if we want to 
apply a long run frequency interpretation of probability, trials must be independent. 

Lord & Novick solve this problem by introducing a thought experiment origi-
nally proposed by Lazarsfeld (1959). It runs as follows: 

'Suppose we ask an individual, Mr. Brown, repeatedly whether he is in favour of the 
United Nations; suppose further that after each question we 'wash his brains' and ask 
him the same question again. Because Mr. Brown is not certain as to how he feels about 
the United Nations, he will sometimes give a favorable and sometimes an unfavorable an-
swer. Having gone through this procedure many times, we then compute the proportion 
of times Mr. Brown was in favor of the United Nations.' (Lord & Novick. 1968. pp. 29-30) 

In the thought experiment, the observations are rendered independent as a result 
of the brainwashing procedure. Now we may apply the frequency interpretation of 
probability. It then becomes possible to take the expectation of the observed scores 
and to define this expectation as the t rue score, which is again a constant. In the 
part icular case of Mr. Brown, the expectation equals the probability of him giving 
a favorable answer, which is estimated by the proportion of times he was in favor 
of the United Nations. The introduction of this thought experiment has proven 
extremely useful in the development of both classical (Lord k Novick, 1968) and 
modern (Hambleton k Swaminathan, 1985) test theory. 

Lord and Novick are very plain in admit t ing tha t they use a thought experiment. 
They are forced to do so by their subject mat ter . A long sequence of repeated 
testing occasions is so obviously implausible tha t they cannot ignore the problem. 
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The thought experiment, however, is not symptomatic for psychological testing. It 
is implicitly present in many applications of frequentist statistics. A long run of 
independent observations on the same unit does not exist anywhere in the real world. 
Almost independent, yes: practically independent, yes; truly independent, no. The 
notion of independent observations is an idealization, although it often is a useful 
assumption (it would certainly be a pathological case of hair-splitting to criticize the 
assumption of independent trials in throwing dice). In virtually every application 
of inferential statistics, however, the thought experiment is needed. Hacking (1965: 
p. 10) hinted at this when he said that long run frequency is concerned with 'what 
the long run frequency is or would be or would have been'. In order to be able to 
invoke the expectation of the outcome of measurements in medicine, economics, or 
social research, one always has to talk about 'what the long run frequency would 
have been if ...'. The conditional part of the sentence contains, in these cases, 
counterfactual premises. It is a thought experiment. 

7.4 The Nature of Statistical Thought Experiments 

The frequentist thought experiment is different from those used in physics or philos-
ophy. The primary characteristic that distinguishes the thought experiment from 
the type that has received attention in the literature so far, is that it is not directed 
at any theory in particular. Although the thought experiment is necessary for em-
ploying the frequentist scheme of statistical inference, it is not used to support 
the frequentist view (in the sense of showing that the frequentist theory is 'true'). 
Rather, it is an integral part of that view: It creates the conceptual framework 
rather than supporting it. This type of thought experiment may be best charac-
terized as functional: A functional thought experiment is not aimed at refuting 
or supporting a theory, but has a specific function within a theory. In the case 
of frequentist statistics, it functions as a semantic bridge, providing a real world 
interpretation for the abstract syntax of probability. 

The distinction between functional and constructive/destructive thought exper-
iments runs parallel to the distinction between theory and model. A theory can be 
true or false: a constructive or destructive thought experiment is intended to show 
that it is true or false. A statistical model, if it is internally consistent, can only be 
shown to be applicable or not applicable; and the functional thought experiment is 
used to convince the reader that it actually is applicable. This, in the frequentist 
thought experiment, is established by an appeal to analogy. The frequentist concep-
tion of probability is generally deemed applicable to games of dice, and as a result 
the outcome of trials in such a game can be considered a random variable, satisfying 
the required independence conditions. In the Lord k Novick thought experiment, 
we are asked to imagine a situation where a subject's response could be considered 
analogous to the outcome of trials in throwing dice. The crucial point is that an 
important structural characteristic (the 'randomness' of the trial outcomes) is pre-
served in the new domain. If this much is granted, the rest of the theory follows 
smoothly. 

The use of functional thought experiments is not limited to the semantic bridge 
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function in frequentist statistics. Actually, there are many statistical models and 
techniques that are not interpretable without a thought experiment. Because it is 
not within the scope of this paper to give a complete and thorough overview of the 
use of functional thought experiments, we only mention briefly some of the models 
in which they are used. One example is the causal model of Rubin (1974; see also 
Holland, 1986), in which it is necessary to consider a concept called the counterfac-
tual expectation. In a standard experimental setup employing an experimental and 
a control condition, this would for example be the counterfactual expectation of the 
dependent variable in the control condition, that would have 'existed' if the sub-
jects in that condition had been assigned to the experimental condition. A related 
statistical technique where thought experiments are needed is the use of covariates 
as control variables. In this technique, the observed means for a given variable are 
corrected for a covariate. For example, a mean difference between men and women 
on annual income may disappear, once the observed difference is corrected for the 
sex difference in educational level. Such a result is interpreted as 'there would not 
have been a sex difference in annual income, had men and women had the same 
average eductional level', which is clearly a counterfactual statement. All these 
statistical thought experiments are functional, since they render a model applicable 
but are not directed at a theory. 

7.5 Discussion 

Functional thought experiments are not aimed at a theory, but create a concep-
tual framework for the application of a theory or model. Therefore, they cannot 
be formulated as arguments in the sense of Norton (1991). Another consequence 
is that functional thought experiments cannot be described as constructive or de-
structive for a theory, and are not captured in the taxonomy of Brown (1991). It 
therefore seems that the functional thought experiment specifies a distinct class of 
thought experiments. This may be one of the reasons that it has gone unnoticed 
in the philosophical literature on thought experiments. Another reason may be 
that statistical thought experiments are, in most cases, not explicitly presented as 
counterfacual lines of reasoning. Most treatments of statistics do not explicate the 
counterfactuals that are employed in statistical arguments, Lord and Novick (1968) 
being one of the rare exceptions to this rule. 

There are several implications of the present discussion that are of interest to the 
role of thought experiments in science. In the literature on thought experiments, 
it is generally contended that the method of thought experiment is used almost 
exclusively in philosophy and physics. Upon the present discussion, however, this 
does not seem to be the case. Thought experiments are used incidentally in physics 
and regularly in philosophy, but they are commonplace in medicine, biology, and 
the social and behavioral sciences. Confidence intervals, p-values, reliabilities, and 
likelihood ratios all result from the same kind of thought experiment: The coun-
terfactual long run. We therefore think it is not unreasonable to say that the long 
run frequency thought experiment, although generally not recognized as such by 
those who employ it, is the most common thought experiment in science. The role 
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of thought experiments and counterfactual reasoning may therefore be more gen-
eral and more important to the development of science than has been previously 
recognized. 





8. APPENDIX B. 
DIFFERENT KINDS OF DIF: 

A DISTINCTION BETWEEN ABSOLUTE 
AND RELATIVE FORMS OF 

MEASUREMENT INVARIANCE AND BIAS 

Abstract 

In this paper, a distinction is made between absolute and relative measure-
ment. Absolute measurement refers to the measurement of traits on a group-
invariant scale, and relative measurement refers to the within-group measure-
ment of traits, where the scale of measurement is expressed in terms of the 
within-group position on a trait. Relative measurement occurs, for example, if 
an item induces a within-group comparison in respondents. We discuss these 
distinctions within the framework of measurement invariance, differentiating 
between absolute and relative forms of measurement invariance and bias. It 
is shown that items for relative measurement will produce bias as classically 
defined if the mean and/or variance of the trait distribution differ between 
groups. This form of bias, however, does not result from multidimensionality 
but from the fact that measurement is on a relative scale. A logistic regres-
sion procedure for the detection of relative measurement invariance and bias 
is proposed, as well as a model that allows for the incorporation of items for 
relative measurement in test analysis. Implications of the distinction between 
absolute and relative measurement are discussed, and prove to be especially 
relevant for the domain of personality research. 

8.1 Introduction 

Questions concerning test validity are central to test theory and scientific progress, 
but also to ethical, legal, and political issues related to test use (Cronbach, 1988; 
Messick, 1989). Within validity theory, the development of concepts such as mea-
surement invariance and item bias has provided an important conceptual framework 
for thinking about these issues. However, the relation between construct validity 
and measurement invariance is not yet entirely clear. This paper purports to provide 
some insight into this relation by presenting a distinction between different kinds 
of measurement invariance and bias, and by evaluating these within a construct va-
lidity perspective. Especially, we are concerned with the meaning of measurement 
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invariance and bias in the domains of personality and attitude testing. 
The ideas of item bias and measurement invariance were first conceived of in 

Item Response Theory (IRT) by Lord (1980). who proposed that measurement 
invariance with respect to group membership holds if an item follows the same Item 
Characteristic Curve (ICC) in all groups. In IRT for dichotomous item responses, 
this requirement means that the probability of a given response is the same for 
members of different groups with the same position on the trait measured by the 
test (Mellenbergh, 1989; Millsap & Everson, 1993). The notion of measurement 
invariance can be generalized to cover a wider range of models by making the more 
general requirement that the distribution function of the item response is invariant 
across groups, conditional on the latent trait (Meredith, 1993). Thus, an item 
j . answered by subject i and assumed to measure latent trait 9, is measurement 
invariant with respect to selection on variable V if and only if the following equation 
holds for the distribution function F of the item response Utj: 

F(Uij = UlJ\e = el,v = vl) = F{utJ = Uij \e = 9i) (s.i) 
for all u,8,v. 

This definition corresponds to unobserved conditional invariance (UCI) as dis-
cussed by Millsap and Everson (1993). Whenever the above condition is violated, 
the item is said to be biased. In the IRT literature, the more neutral term Differ-
ential Item Functioning (DIF) is often preferred. In this paper, we use the terms 
interchangeably. Thus, item bias occurs if and only if 

F(Uij = ui3 | 6 = 0u V = in) ± F{Uij = ^ 16 = 0,) (8.2) 

for some u.O.v. 
As can be seen from Formula 8.2, item bias amounts to an influence of group 

membership on the item response in subpopulations with the same position on the 
trait. Item bias may, for example, occur in an IQ-test if men score better on an 
item than women, although there is no difference in intelligence. Item bias is to 
be sharply distinguished from impact, which amounts to differences in test scores 
that are due to differences in trait distributions (Millsap & Everson. 1993). For 
the above example, impact would occur if the better scoring of men was due to 
higher mean intelligence. In this case, the differential performance can be entirely 
attributed to a difference in location of the latent trait distributions. 

Item bias bears directly on construct validity. When the intention is to mea-
sure a unidimensional concept, one would intuitively expect that a biased item is 
necessarily invalid. Indeed, item bias has been equated with multidimensionality 
(Kok, 1988). Shealy and Stout (1993, p. 198) remark that 'test bias occurs if the 
test under consideration is measuring a quantity in addition to the one the test 
was designed to measure, a quantity that both groups do not possess equally'. On 
the item level, item bias is seen as the effect of an unwanted, additional variable 
on the item response. In this view, bias with respect to group membership is pro-
duced by an association of this additional variable with group membership, thus 
influencing item responses differently in each group. Consequently, if the intention 
is to measure a single trait, removing items that are biased with respect to group 
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membership from the test seems a plausible strategy to enhance construct validity. 
One of the objectives of this study, however, is to show that this is not always the 
case. 

The conceptual framework of measurement invariance has been developed from 
the perspective of cognitive testing, and this is the primary field where DIF-analyses 
are used. One reason for this is that the concepts of measurement invariance and 
bias are most salient in individual decisions that are 'high-stake', for example when 
tests are used for college admissions or personnel selection - domains where cognitive 
tests are of primary importance. For scientific purposes, however, the importance 
of questions concerning measurement invariance and bias is not restricted to any 
specific theoretical domain. Indeed, there have been some recent applications in 
personality testing (Ellis, Becker & Kimmel, 1993; Huang, Church & Katigbak, 
1997; Smith & Reise, 1998), and the screening for DIF is equally important in the 
field of personality psychology as in any other domain of psychological measurement. 

Now, the technical aspects of measurement invariance and bias can be applied 
to domains other than cognitive testing without any specific problems, since they 
are of a mathematical nature and thus entirely syntactical. However, the meaning 
of measurement invariance and bias may change with the field of application. We 
will be concerned with one specific shift of meaning that occurs when the concepts 
of measurement invariance and bias are used in the area of personality and attitude 
testing. Especially, we will look at the meaning of measurement invariance when 
items invoke a frame of reference, for example by inducing a within-group compar-
ison. It will be argued that such items will display bias as defined above. However, 
from a construct validity perspective, such items are not necessarily invalid, but 
rather there is a misfit between the model that is used and the cognitive processes 
that are involved in the item response. To deal with this problem, we extend the 
conceptual framework of measurement invariance. We introduce a distinction be-
tween relative and absolute forms of measurement and define the corresponding 
forms of measurement invariance and bias. We show that items inducing a within 
group comparison lead to absolute, but not to relative bias. Following this dis-
tinction it will be argued that items showing absolute, but no relative bias, do not 
necessarily have to be eliminated from a test. Upon proper analysis, these items -
although biased according to current standards - can enhance test validity and do 
not necessarily produce test bias. 

8.2 Absolute and relative forms of bias 

Consider the following thought experiment. Imagine a world where the develop-
ment of measurement theory in the social sciences has preceded measurement in 
the natural sciences. In this world, psychological research on attitudes and self-
efficacy is common practice, whereas concepts such as 'height' or 'weight' are still 
to be invented. A psychologist might then conceive of a person's 'height' as a useful 
construct for the explanation of certain types of behavior, such as the predisposition 
of some individuals to participate in basketball, and the difficulty others experience 
when reaching for the upper shelves of a closet. However, because a measurement 
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apparatus for the assessment of height has not yet been invented, he can only use 
social science's measurement methods to assess height. For this reason, he would 
probably go about constructing a questionnaire consisting of items like 'I have trou-
ble getting a book from the upper shelves in a library', 'Sometimes I have to bend 
over in order to see my face in a mirror', and ;When sitting on somebody else's 
chair, I cannot usually reach the ground with my feet'. Suppose he would have con-
structed a questionnaire consisting of the aforementioned three items, and would 
add a fourth on the basis of his intuitions concerning the relation between height 
and basketball: 

'I would do well on a basketball team'. 

Although this item has high face validity, a formal test of DIF points out that 
the item shows DIF with respect to sex; women have a higher probability of an-
swering 'yes' than do men of the same height. Formally, if we call the item response 
(scored dichotomously with 'yes':l and 'no':0), take height to represent the latent 
trait 9, let V denote sex (say, V= 0 for men and V= 1 for women), and define the 
probability of the item response Uij as P{Uij = Wy), then 

p(Uij = 11 e = 9t, v = o) < p(utj = 11 e = eitv = i), (8.3) 
for at least some values of 9, so the item has DIF. To increase test validity, our 
psychologist removes the item from the test. But is this a sensible thing to do? We 
think it is not, and this has to do with the nature of the sex difference. A woman, 
5.8 feet tall, may imagine a basketball team consisting of women, and conclude that 
she would do good because she is relatively tall - considering her sex. A man of 
the same height may correctly judge himself to be relatively short - considering his 
sex - and conclude the opposite. Because of the within-group comparison made by 
both sexes, the item has absolute bias: men and women of the same height do not 
have the same probability of an affirmative answer. However, men and women with 
the same relative height within their own group (for example, a standard deviation 
above the group mean) do have identical probabilities of an affirmative answer. 
Thus, although the item is biased with respect to absolute height, it is not biased 
with respect to relative height. 

We now formalize this notion. Denote the relative position on the trait by f2, 
taking on values a>j. Then, for the item under consideration, although it is true 
that 

p{Uij = 11 e = du v = o) < p(Uij = 11 e = eit v = i), (8.4) 
for some 9, it is also true that 

P{Uij = 1 | Cl = uu, V = 0) = P{Uij = 1 | fi = Wj, V = 1), (8.5) 

for all u>. Following this insight, we can distinguish two forms of measurement. 
Absolute measurement refers to a procedure to measure the trait on an absolute 
scale (e.g., 'I have trouble getting a book from the upper shelves in a library'), 
and relative measurement refers to a procedure to measure the trait on a relative 
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scale (e.g., 'I would do well on a basketball team') , where the measurement unit is 
expressed in terms of the relative position within the group to which the subject 
belongs. The different forms of measurement imply different definitions of mea-
surement invariance and bias. Accordingly, we differentiate between absolute and 
relative measurement invariance and their corresponding forms of bias as follows: 

D e f i n i t i o n 1. For an item j , generating item response Uij and measuring trai t 6, 
absolute measurement invariance with respect to selection on variable V holds if 
and only if 

F(Uij = Uij | O = 0UV = Vi) = F(UZJ = UlJ \Q = 9i) (8.6) 

for all u, 0, v. Absolute bias with respect to selection on variable V occurs if and 
only if 

FiUij = mj | 9 = 6i, V = Vi) £ F(Uij = u^ | 6 = 6i) (8.7) 

for some u, 6, v. Note tha t these are the usual definitions of measurement invariance 
and bias (Mellenbergh, 1989; Millsap and Everson, 1993). 

D e f i n i t i o n 2. For an i tem j , generating item response Uij and measuring trai t 6, 
relative measurement invariance with respect to selection on variable V holds if and 
only if, for the item response conditional on u> (the relative, within-group position 
on 0), 

F(Uij =Uij\a=Wi,V = in) = F{Ul3 =UlJ\n = tut) (8.8) 

for all u,u),v. Relative bias with respect to selection on variable V occurs if and 
only if 

F{Un = Uij | fi = uu V = Vi) ? F(Uij = u^ \Ü = üJi) (8.9) 

for some u,ui, v. 

Now the problem occurs how to specify UJ. This depends primarily on the 
nature of the cognitive processes involved in answering personality items, which at 
present is unknown for most tests. However, it is obvious tha t w should be some 
transformation of the trai t 9. The form of this transformation might be different 
for different tests, items, and it could, in principle, even vary over groups. So, 
in the general definitions the exact form of the transformation should not play a 
role. However, in order to apply the concepts of relative measurement and bias, 
we have to assume some form for the transformation. We will conceive of u; as 
the within-group standardized transformation of 8. There are three reasons for 
this. First, this assumption leads to precise and testable hypotheses. Second, the 
Z-transformation has many desirable mathematical properties tha t will become 
apparent in the next section. Third, even if the actual comparison is not made 
on a standardized within-group scale (for example, if it is in terms of absolute 
deviations from the mode) , the Z-transformation will often provide a reasonable 
approximation. In the remainder of this paper, therefore, us will be equated with 
the within-group'standardized transformation of 6, which we will denote as 5 , taking 
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on possible values £j. Note that the first two moments of the distribution of £ are -
by definition - the same across groups: It has mean 0 and variance 1 within each of 
the groups. Further, if the original trait distributions are normal, the distribution 
of £ is the same in each group. This observation has implications for the theory of 
multidimensionality, which are discussed below. 

By equating w with the within-group standardized transformation of 6, defini-
tions 8 and 9 are altered by substituting 3 and £j for Q and Wi, respectively, and 
the resulting concepts may be coined 'standardized relative measurement invariance 
and bias'. To avoid an overload of terminology, however, in text we will continue 
to speak of relative measurement invariance and bias, with the understanding that 
an assumption concerning the form of the transformation has been made; conse-
quently, we will use £ instead of w in the formulae. Finally, we would like to stress 
that different forms of the transformation could be used, and that the appropri-
ateness of the chosen form of the transformation represents a testable hypothesis. 
Thus, although the exact form of the transformation does not play a role in the 
general definitions given above, it does play a role in the consequences and assess-
ment of relative measurement invariance and bias. As a consequence, the results 
derived hereafter do depend on the appropriateness of the Z-transformation. 

8.3 The Relation between Absolute and Relative Bias 

In this section, we examine the relation between absolute and relative measurement 
invariance and bias. This paragraph is primarily intended to show the mutual 
incompatibility of absolute and relative measurement invariance. The terminology 
of IRT will be used because it allows for a clear and comprehensible expression of 
the concepts of measurement invariance and bias. Later in this paper, we return 
to the more general case and also discuss a structural equation modeling (SEM) 
approach to modeling relative measurement invariance. 

In parametric IRT, the probability of a correct response to an item is expressed 
as a function of a person characteristic (the position on the latent trait) and a 
number of item characteristics (e.g., the difficulty of the item and the item's ability 
to discriminate between subjects with different trait values). A common form for 
this relation between the probability of a correct response, the position on the latent 
trait, item difficulty, and item discrimination, is provided by Birnbaum's (1968) two 
parameter logistic model: 

where (3j indicates the difficulty of item j , o.j is its discrimination parameter, and 0* 
denotes subject i's position on the latent trait 9. For a single item, model Formula 
8.10 gives the Item Characteristic Curve (ICC), which results from plotting the 
response probabilities for this item against the latent trait values. The parameter fij 
determines the location of the ICC and the parameter ctj its slope in the point 6i = 
j3j, hence their interpretation as item difficulty and item discrimination. Absolute 
measurement invariance can be expressed as the requirement that the ICC's for 
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different groups are identical: If ICC's are identical across groups, the probability 
of a correct response, conditional on the latent trai t , is the same for subjects with 
the same latent trai t values, regardless their group membership. 

The ICC results from plotting the probability of a correct response against the 
latent trait , for which absolute trait values are used. Following our distinction 
between absolute and relative measurement, we will refer to the 'classical' ICC dis-
cussed above as an absolute ICC. However, it is also possible to plot the probability 
of a correct response against relative trait values. This gives us a relative ICC. 
The relative ICC relates the probability of a correct response to the within-group 
standardized latent trai t £. Like the absolute ICC, its form is determined by two pa-
rameters indicating the relative (within-group) difficulty and slope. We will denote 
these parameters as 0jrcl and Qj r e , , and refer to the original absolute parameters 
3:5 Pjabs a n d ajabs • The form of the two-parameter variant of the relative ICC is 
determined by the following formula: 

P(UtJ = 1 I ft.a^./Sw) = l + ^Jnlle,-Pirmly ( 8 ' U ) 

As is the case with absolute measurement invariance, the requirement of relative 
measurement invariance, tha t the relative ICC's must be equal across groups, can 
be reformulated as the requirement tha t the parameters of the relative ICC's, Pjrcl 

and ajrel, are equal across groups. 
The question arises how the relative ICC relates to the absolute ICC, or. al-

ternatively, how the relative item difficulty and discrimination parameters relate 
to the absolute item difficulty and discrimination parameters . In particular, it is 
interesting to inquire under which conditions absolute and relative measurement 
invariance may both hold. We discuss the relation between absolute and relative 
measurement at an intuitive level before turning to a more precise formulation of 
the relation between absolute and relative parameters . 

F igure 8.1. Absolute and relative ICC's for an item with relative measurement invariance 
but absolute bias. 

' I would do well on a basketball team' 

Consider the item for relative measurement in the height test ('I would do well 
on a basketball t eam ' ) . The left half of Figure 8.1 shows, in a single graph, the 
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population distributions of the latent trait and the absolute ICC's for men and 
women. (The population distributions and the ICC's can be drawn in a single 
graph because, in IRT, trait parameters and item difficulty parameters are on the 
same scale.) The ICC's for men and women differ in location (i.e., item difficulty), 
indicating absolute bias. The right half of Figure 8.1 shows the relative ICC's , tha t 
is, the item response probabilities plotted against relative trai t values. Also shown 
are the population distributions of the relative trai t values. These are identical 
because the t ra i t has been standardized within groups (the distribution has mean 0 
and variance 1 in each of the groups). Because the locations of the absolute ICC's 
relative to the within group distributions are the same, the relative ICC's are iden-
tical for men and women. This indicates that there is no relative bias; the item has 
relative measurement invariance. 

F igure 8.2. Absolute and relative ICC's for an item with absolute measurement invari-
ance but relative bias. 

'I have trouble getting a book from the upper shelves 
of a library' 

In contrast , Figure 8.2 shows an item with absolute measurement invariance ('I 
have trouble getting a book from the upper shelves in a library' , scored yes:0 and 
no: l ) . The absolute ICC's, shown in the left half of the figure, are identical for men 
and women, indicating absolute measurement invariance. However, the absolute 
ICC is located relatively further away from the mean of the t ra i t distribution for 
men than it is for women; moderately short women have the same probability of 
an affirmative response as do extremely short men. As a consequence, the relative 
ICC's are different, as is shown in the right half of Figure 8.2, and the item has 
relative bias. 

Finally, Figure 8.3 shows an item for which both the absolute and the relative 
ICC's are different for men and women, for example 'In bed, I often suffer from cold 
feet'. This indicates tha t the item has both absolute and relative bias. 
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Figure 8.3. Absolute and relative ICC's for an item with both absolute bias and relative 
bias. 

'In bed, I often suffer from cold feet' 

The figures suggest that absolute and relative measurement invariance cannot hold 
simultaneously if the distribution of the latent trait differs across groups. This is 
due to the fact that the absolute ICC's cannot be simultaneously located at the 
same position on the absolute trait (absolute measurement invariance) and have 
the same location relative to the group means (relative measurement invariance). 
We now turn to a more precise formulation of the relation between absolute and 
relative parameters. 

We have defined a relative ICC in model Formula 8.11. The relative parameters 
can be expressed as functions of the absolute parameters, because the relative trait 
values are linear transformations of the absolute trait values; they are defined by 
the within-group standardization 

C, = ^ ^ (8.12) 

where fi$v and agv represent the mean and standard deviation of the trait distri-
bution in group v, to which subject i belongs. This standardization is performed 
separately for each group, which means that a possibly different linear transforma-
tion of the trait values is performed in each group. The relation between absolute 
and relative item parameters can be expressed as the effect of these transformations 
on the item parameters. 

The absolute difficulty parameter (3jabs is defined as the latent trait value for 
which the probability of a correct response, given the latent trait, is 0.5. In the 
standardization all trait values are rescaled through Formula 8.12. It follows that 
the relative difficulty parameter is the relative trait value that is associated with 
the absolute trait value through the linear transformation given in model Formula 
8.12. So. 

p = Pjat. - »ev ( 8 1 3 ) 

The relative and absolute difficulty parameters are related through a linear trans-
formation that is possibly different for each group. Whether the transformation is 
different depends on differences in the trait distribution between groups. It follows 
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that, if the mean and/or variance of the trait distribution differ between groups, 
absolute and relative measurement invariance in the difficulty parameters cannot 
hold simultaneously. 

A similar effect holds for the discrimination parameters. It is intuitively plausible 
that differences in trait variances have an effect on the slope of the relative ICC. 
Since the standardization changes the distances between trait values by a factor 
l/ce„, we can expect the slopes of the absolute and relative ICC's to differ by a factor 
<j0v. Formally, we can derive this result as follows. We may set Equations 8.10 and 
8.11 equal within each group, because the standardization of trait values is a linear 
transformation, and consequently the probability of a response for each value of 6 
and the corresponding value of £ must be the same within each group. Substituting 
the right hand sides of Equations 8.12 and 8.13 for £, and (3jrcl, respectively, and 
solving for aJre i , we obtain 

ajrei = aev<Xjabs (8-14) 

From this relation it follows that, if the variance of the trait distribution differs over 
groups, either absolute or relative bias in the discrimination parameter will occur. 

Thus, absolute and relative measurement invariance cannot hold simultaneously 
if groups differ in means and/or variances of the latent trait. This relation also holds 
for other than dichotomous item responses, e.g. polytomous or continuous item re-
sponses. We do not formally prove this statement, because we think it is rather 
obvious: Any type of item can only be simultaneously measurement invariant with 
respect to 8 and with respect to £ if the transformation that leads from 9 to £ is 
identical across groups. This transformation can only be identical if the means and 
variances of the population distributions on the latent variable are the same. Thus, 
absolute and relative measurement invariance can hold simultaneously, but only if 
there are no differences in the means and variances of these population distributions. 
If there are differences in the means and/or variances of these distributions, abso-
lute measurement invariance will lead to relative bias, and relative measurement 
invariance will lead to absolute bias. 

8.4 DIF-Detection and Modeling 

The question arises how to detect relative DIF in an empirical situation. The 
formulation of relative measurement invariance as the requirement that relative 
ICC's are identical across groups opens a range of possibilities. It makes IRT-based 
techniques for the assessment of absolute DIF available for the detection of relative 
DIF. Thus, methods based on area measures, such as signed and unsigned area 
tests, as well as statistics for the equality of item parameters, or Mantel-Haenszel 
based procedures, could in principle be used to assess relative DIF (see Holland and 
Wainer, 1993. or Camilli and Shepard, 1994, for overviews of available techniques 
for the detection of absolute DIF). 

For the dichotomous case, we will present an adaptation of the logistic regression 
approach (Swaminathan & Rogers, 1990) for the detection of relative measurement 
invariance and DIF, because it is simple and instructive. The logistic regression 
approach is based on the idea that, in a regression of the binary item response on 



8.4 DIF-Detection and Modeling 173 

the continuous latent trait, group membership should not contribute significantly 
to the prediction, once the trait has been included as a predictor in the regression 
equation. If, as is usual, a sumscore X is used as a proxy for 0, an item can be 
tested for DIF by fitting the full regression 

eca+c1X+c2V+c3XV 
J ~ ' ~ 1 -|- gCo+ciX+caV+ca^V (8.15) 

where the c0 to c3 are regression parameters, X is a sumscore, and V is a dummy 
variable coding for group membership. In this procedure, one checks whether the 
parameters 2 and c3 differ from zero. Here, c2 represents the main effect of group 
membership and c3 the interaction between group membership and the sumscore. 
A significant parameter value for c3 would indicate non-uniform DIF. which occurs 
when the amount of DIF changes across levels of X (Mellenbergh, 1982). If the 
parameter value for c3 is not significant, but the parameter value for c2 is, this 
indicates uniform DIF, i.e., a constant amount of DIF across levels of X. 

Relative measurement invariance can also be tested using logistic regression. 
Since the concept of relative measurement invariance requires that there is no effect 
of group membership, given the relative position on the trait, we substitute Z for 
X in the regression (where Z is the within-group standardized value of X, and is 
taken as a proxy for £ - note that one needs a set of absolute items to compute X 
before this procedure can be carried out). This gives 

ec0+c1Z+c2V+c3ZV 
3' ~ ' ~ 1 -)- eco+ciZ+c2V+c3ZV (8 .16) 

Again one proceeds by checking the significance of the parameters c2 and c3, but 
now significant parameter values indicate relative DIF instead of absolute DIF 
Analogous to the absolute case, a significant value for the parameter c3 indicates an 
interaction between group membership and the latent trait, corresponding to non-
uniform relative DIF. A significant value for the parameter c2 without a significant 
value for c3 indicates uniform relative DIF. 

If an item shows relative measurement invariance but absolute DIF, the item 
may be used as a relative indicator of the trait in question. This requires modeling 
relative measurement, which implies that the absolute and relative items be treated 
differently. For absolute items, item parameters should be equal across groups as 
usual. For relative items, however, the (absolute) item parameters will differ across 
groups if the trait distributions differ (see the previous section). Now, under relative 
measurement invariance, the differences in discrimination and slope are functions of 
the difference in trait distributions. The relations between the absolute parameters 
m both groups are simple and can be deduced from Formulae 8.13 and 8.14. Setting 
the right hand side of Formula 8.13 equal for two groups and solving for the absolute 
difficulty in group 1 gives 

/W^+^J^"^] (8.17) 
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for the difficulty parameters, where the second subscript on these parameters indi-
cates group. For the discrimination parameters we obtain 

a»*. = ^«J2abs (8-18) 

Modeling relative item responses can be carried out using these relations. A (slightly 
ad hoc) method for doing this would consist of the following three steps. First, 
estimate the means and variances of the trait distributions in both groups using 
only a set of absolute items. This provides estimates for the means and variances 
of the trait distribution in the different groups. Second, estimate the absolute 
item parameters for the relative items in one group (use the largest group for better 
parameter estimation). This provides estimates for the absolute item parameters for 
the relative items in one group, so that the difficulty and discrimination parameters 
for each relative item can be inserted into the right hand side of Formulae 8.17 and 
8 18 Finally, fix the absolute parameters for the relative items in the second group 
at the values given by Formulae 8.17 and 8.18. This method is somewhat ad hoc, 
but has the advantage of being simple and easy to implement in widely available 
software. Also, this procedure yields the possibility to assess the fit of the entire 
model with absolute and relative items, thus testing the fit of the absolute and 
relative part of the model simultaneously. 

Another option that may be taken, which is especially useful in a SEM approach, 
is to conceptualize the relative, within group dimension as a separate latent variable. 
SEM programs such as LISREL (Jöreskog & Sörbom, 1993) are flexible enough 
to specify an absolute latent variable for the absolute items and a relative latent 
variable for the relative items. The relative latent variable is then restricted in such 
a way that it becomes a within-group standardized rescaling of the absolute latent 
variable. This requires that the relative latent variable correlates perfectly with 
the absolute latent variable within groups, and that it has a mean of zero and a 
variance of one within each of the groups. To provide a within-group correlation of 
one between the absolute and relative latent variable, the covariance matrix of these 
latent variables must be subjected to nonlinear restrictions. Further, the mean and 
variance of the relative latent variable are fixed at zero and one, respectively, and 
specified to be invariant across groups. The between-group differences in means 
and variances for the absolute latent variable, however, are freely estimated. Then 
one subjects the entire model to a test for strict factorial invariance (Meredith, 
1993) to test for relative measurement invariance. The formal details of this model 
are outlined in the Appendix. This is an elegant procedure for fitting the relative 
model and a useful extension of the SEM framework. To our knowledge, widely 
available IRT software does not allow the required restrictions to be imposed. For 
dichotomous item responses, this approach can therefore only be taken indirectly 
through the analysis of tetrachoric correlations with SEM programs. 

8.5 Illustration 1 

We will illustrate some of the ideas and procedures set forth in this paper by ana-
lyzing a Dutch version of the Personality Research Form-E (PRF-E). a widely used 
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personality questionnaire due to Jackson (1974). The P R F - E was administered to 
157 male and 279 female undergraduate psychology students . We will assess abso-
lute and relative measurement invariance with respect to sex. 

Table 8.1 . p-values for the items in the PRF-E subscale -impulsivity'. Negative items 
(items 9 to 16) have been recoded, so that all p-values represent the proportion of indicative 
responses. 

Item Pmales Pfer 
1. Often I stop in the middle of one activity in order to start .64 .62 
something else. 
2. I often say the first thing that comes into my head. .50 .63 
3. When I go to a store, I often come home with things I had .42 .58 
not intended to buy. 
4. Many of my actions seem to be hasty. .47 .46 
5. I have often broken things because of carelessness. .50 .47 
6. Most people feel that I act impulsively. .41 .45 
7. Sometimes I get several projects started at once because I .59 .59 
don't think ahead. 
8. I find that thinking things over very carefully often destroys .44 .56 
half the fun of doing them. 
9. I am careful to consider all sides of an issue before taking .52 .64 
action. 
10. I am pretty cautious. 
11. Rarely, if ever, do I do anything reckless. 
12. Emotion seldom causes me to act without thinking. 
13. I have a reserved and cautious attitude toward life. 
14. My thinking is usually careful and purposeful. 
15. I am not one of those people who blurt things out without 
thinking. 
16. I generally rely on careful reasoning in making up my .31 .45 
mind. 

.31 

.71 

.41 

.32 

.36 
.46 

.34 

.71 

.66 

.46 

.60 
.61 

A nice property of the concept of relative measurement invariance is that it is 
possible to do a quick scan of a scale to see whether it may contain items for relative 
measurement - which is difficult with absolute measurement invariance. The reason 
for this is tha t the restrictions of relative measurement invariance imply that the 
p-values of relative items are equal across groups. So, if a scale consists of a number 
of items with unequal p-values across groups, but there is also a set of items with 
equal p-values, this may indicate tha t the items with equal p-values are items for 
relative measurement of the trai t in question. 

We found several scales in the P R F - E that showed this pat tern , but it is most 
pronounced in the subscale 'impulsivity'. Since this analysis is a mere illustration 
of some of the ideas presented in this paper, we limit our analysis to this scale. The 
pat tern of p-values for males and females is shown in Table 8.1. 

These results suggest the existence of relative and absolute items in the scale. 
The items 1, 4, 5, 6. 7, 10. and 11 show almost identical p-values for males and 
females, which may indicate relative measurement. On the other hand, items 2, 3, 
8. 9, 12. 13. 14, 15, and 16 show higher p-values for females, which mav indicate a 
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sex difference in latent trai t distributions - females being more impulsive. We can 
check this by applying the logistic regression procedure. The items hypothesized to 
be items for absolute measurement are combined in a subscale, generating an abso-
lute total score. This sumscore is then standardized within each group to generate 
a relative score. Subsequently, the amount of DIF for each item is evaluated with 
respect to the absolute score (to detect absolute DIF), and the relative score (to 
detect relative DIF) by assessing the effect of sex on the item response. The results 
yielded by this procedure are reported in Table 8.2. Only the results concerning 
uniform DIF are reported, since none of' the items showed non-uniform absolute or 
relative DIF . 

Table 8.2. Standardized parameter estimates for the effect of sex in the logistic regression 
procedure. A positive parameter estimate indicates that females have a higher probablility 
of an affirmative answer, conditional on their absolute/relative score. 

Item 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
L6 

Absolute bias 
-1.33 
-0.59 
0.82 
-3.15 
-1.95 
-2.12 
-2.83 
-0.21 
0.65 
-1.85 
-2.13 
10.03 
-0.55 
1.37 
-0.65 
-0.79 

Relative bias 
-0.29 
3.04 
3.48 
0.43 
0.58 
0.63 
-0.13 
2.45 
2.85 
0.63 
-0.05 
5.65 
2.85 
5.56 
3.18 
3.13 

The results are in line with the initial hypothesis. The items tha t we hypothesized 
to be items for relative measurement conform to the idea t ha t they measure relative 
to the other items in the scale, consistently showing absolute but no relative DIF. 
An exception is item 1, showing neither absolute nor relative DIF . The theoretical 
impossibility of such a result, given the difference in absolute score distributions, 
implies tha t this is due to a lack of power. The absolute items also behave as 
expected, consistently showing relative DIF but no absolute DIF . except for item 
12. This item shows both absolute and relative DIF - presumably caused by the 
explicit use of the word 'emotion' - and should probably be removed. 

Of course, these results should be interpreted with some caution; although the 
items do behave as relative items, inspection of the content of the items does not 
yield obvious reasons why this should be so. Further research should give more 
insight into the item features t ha t trigger relative measurement. A research strategy 
tha t could give some insight in the response processes involved would be to present 
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the items with and without explicit instructions for comparison. So. items could be 
administered with the instruction to compare oneself to a fixed reference group (e.g., 
males), with the instruction to compare oneself to a variable reference group (e.g., 
the group to which one belongs), and without any instruction at all. Comparing 
ICC's across these situations should provide information on the relevant response 
processes, which would in turn strengthen the validity of this and other personality 
scales. 

8.6 Illustration 2 

As mentioned, the concepts of absolute and relative measurement invariance gen-
eralize to other latent variable models such as the congeneric model often used 
in SEM. To illustrate the approach for the SEM model, we use a subset of da t a 
collected by Rodriguez Mosquera, Manstead, & Fischer (2000). They constructed 
scales to measure several types of honor concerns. A total of 61 male and 61 female 
Dutch undergraduate psychology students completed the scales. 

Table 8.3. Means and standard deviations for males (n=61) and females (n=61) on items 
in the scale for honor concerns. 

Item: 'How bad would you feel if the following Mean (SD) for Mean (SD) for 
description applied to you?' males females 
1. Wearing provocative clothes 
2. Sleeping with someone without starting a 
serious relationship with that person 
3. Changing partner often 
4. Being known as having different sexual con-
tacts 

2.10 (1.14) 
2.48 (1.63) 

2.82 (1.38) 
2.77 (1.57) 

2.16 (1.39) 
2.77 (1.42) 

3.44 (1.32) 
3.90 (1.38) 

We analyze a subset of items of a scale called 'feminine honor concerns' and evaluate 
measurement invariance with respect to sex. The items request the participant to 
rate, on a 7-point scale, how bad he /she would feel if the descriptions given in the 
items applied to him/her . The content of the items is given in Table 9.3 along with 
the means and s tandard deviations for both sexes. 

We fitted a unidimensional model with strict factorial invariance constraints 
across groups (Meredith, 1993) to test for measurement invariance. Although the 
model cannot be rejected (x2(14) = 21.77; p = .08), overall fit is not satisfactory 
(RMSEA = .08), and inspection of modification indices suggests the presence of 
DIF. Likelihood ratio tests, conducted by individually freeing intercept parameters, 
reveal uniform bias for item 2 {X

2(l) = 6.85;p < .05) and for item 4 ( Y 2 ( 1 ) = 
7 .00 ;p< .05). 

As can be seen from Table 3, however, the observed means of items 1 and 2 are 
almost equal across groups. The content of the items, 'wearing provocative clothes' 
and 'sleeping with someone without s tar t ing a serious relationship with tha t person' 
suggest tha t these items may be interpreted differently by men and women. It is not 
implausible tha t subjects interpret the content of the items conditional on their sex. 
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If this is the case, it implies tha t these items may be treated as relative, within-
group indicators. We fitted a model specifying these items as relative indicators 
using the SEM procedure described in the previous section (see the Appendix for 
the technical details). A graphical representation of the model is given in Figure 8.4. 

F igu re 9.4. A structural equation model for relative measurement. Items 1 and 2 load 
on the relative factor, and items 3 and 4 on the absolute factor. The relative factor is 
obtained by standardization within groups, and correlates unity with the absolute factor. 

The model cannot be rejected (x2(14) = 15.84; p = .32) and fits the da ta very 
well (RMSEA < .01). In accordance with these results, inspection of modification 
indices does not reveal substantial misfit anywhere in the model. Given the fact 
tha t the number of parameters in the model is equal to the number of parameters 
in the absolute model with strict factorial invariance, the bet ter fit of the relative 
model suggests tha t this model should be preferred. This may indicate tha t i tems 1 
and 2 do indeed measure relative to items 3 and 4. which may teach us more about 
the s tructure of honor concerns in male and female populations. This, in turn , may 
provide valuable information for theory development in this area. 

8.7 Discussion 

The theory and research presented in this paper provide some insight into the 
complicated relation between measurement invariance and construct validity. It 
has been argued tha t not all items tha t show DIF in the classical sense are invalid. 
Rather , a failure to distinguish between absolute and relative forms of measurement 
will lead to apparent bias of items for relative measurement. I tems for relative 
measurement can be valid indicators of a trai t within groups, but because of their 
relative nature, these items are bound to produce bias as defined in the classical 
sense. If the relative nature of the items is recognized, they do not have to be 
eliminated from a test. Instead, they can be used as relative indicators of the t ra i t 
in question. 
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The distinction between absolute and relative measurement has some implica-
tions for the theory of measurement invariance and bias. If the latent trait distri-
bution differs across groups, an item will show either absolute bias, relative bias, 
or both: Absolute measurement invariance and relative measurement invariance 
cannot simultaneously hold, unless the trait distributions are identical. If the trait 
distributions differ, relative measurement invariance of a given item will cause that 
item to show absolute bias. Bias in the classical sense can therefore result from 
relative measurement invariance. This is an intriguing result because it contradicts 
the view that all bias results from multidimensionality. 

The relation between bias and multidimensionality should be constructed as fol-
lows. Bias is a group difference in the distribution of item responses conditional 
on the latent trait. Multidimensionality is a possible explanation for the presence 
of bias. Now, it is sometimes suggested that bias is multidimensionality because 
a biased item 'measures' group membership in addition to the variable of interest. 
So, in a very general sense, group membership is then conceived of as the second 
dimension. This line of reasoning may be maintained, but in this case multidi-
mensionality is no longer an explanation of item bias: such an explanation would 
be circular because the group difference is exactly the phenomenon that requires 
an explanation. Thus, in this line of reasoning, all bias is multidimensionality, all 
multidimensionality is bias, and there does not seem to be a good reason for en-
tertaining two words for the same concept. As a consequence, either of the terms 
should be dropped from the psychometric vocabulary. We do not endorse such a 
point of view, and take the relation between multidimensionality and bias to be of 
an explanatory nature. This implies that the second variable that the item mea-
sures in addition to the intended trait must be a variable that is distinct from 
group membership, although it must in some way be related to group membership 
(otherwise the variable could not influence the item responses differentially). The 
most sophisticated theory of the relation between this second variable and bias is 
the theory presented in Shealy & Stout (1993). Shealy & Stout show that a second 
variable could produce bias, if the groups differ in the distribution on this vari-
able. In their theory of multidimensionality, group differences in the distribution 
of the second trait are therefore a necessary condition for bias to occur (Shealy & 
Stout, 1993, p.209 ff.). In other words, there has to be some association between 
this second trait and group membership. However, this is obviously not the case 
in relative measurement, because the distribution on a relative latent variable will 
often not be associated with group membership - for example, if the absolute trait 
distributions are normal. In view of this problem, there are two ways to proceed. 
Either Shealy & Stout's theory has to be revised in order to accommodate for the 
relative position on the measured variable as a second dimension producing bias, or 
we have to conclude that relative measurement does not imply multidimensionality. 
The first of these options requires that we consider, for example, absolute height 
and relative height to be two different traits. In our view this would render the con-
cept of multidimensionality rather trivial. We therefore take the second option and 
submit that relative measurement invariance does not imply multidimensionality, 
but unidimensional measurement of the intended trait within groups. We conclude' 
that not all bias results from multidimensionality. 
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A failure to recognize the fact that items provide relative measurement may 
produce distortions in the interpretation of data. For instance, in personality re-
search, researchers obviously assume that the items in a personality scale are items 
for absolute measurement. This assumption is, however, not self-evident. If the 
assumption is not fulfilled, this may lead to incorrect conclusions regarding person-
ality differences between groups. This is a direct result from the fact that absence 
of impact cannot be distinguished from relative measurement invariance without a 
substantial number of absolute items or a separate criterion. Consider, for example, 
an assertiveness scale in which most or all items are actually items for relative mea-
surement (i.e., the item responses result from an explicit or implicit comparison of 
subjects with other members of a relevant group). A psychologist obtains responses 
from American and Japanese subjects. Suppose that the American subjects are in 
fact more assertive than the Japanese. What would happen if he started looking for 
an effect of nationality on assertiveness? He would never find any, since both groups 
answer the items by comparing themselves to their own reference group, which au-
tomatically results in comparable mean scores on the test. This is not an academic 
point, because virtually nothing is known about the cognitive processes involved 
in responses to personality items. Whether this kind of distortion occurs, and if 
so. how grave its consequences are. is of course a question for empirical research. 
Nevertheless, research in this area may profit from taking the relative nature of 
items in personality scales into account. An interesting line of research would con-
sist in assessing absolute and relative measurement invariance of personality items 
with respect to a behaviorally inspired matching criterion. Such research, of course, 
requires the evaluation of tests at the item level. In this respect, the advantages of 
the generalized item response theory models (Mellenbergh, 1994) over classical test 
theory cannot be overemphasized. 

The concept of relative measurement invariance could further be applied in a 
range of other situations. One could, for example, think of cross-cultural research 
into subjective well-being or happiness: It is not unlikely that people, in responding 
to items used in these scales, compare themselves to other people in their environ-
ment. I may consider myself depressed compared to the people around me, but if 
I get really depressed and I am admitted for hospitalization, I may consider myself 
rather happy compared to the people surrounding me there. Concepts such as sat-
isfaction and happiness do seem to have an inherently relative component, and are 
therefore susceptible to relative measurement. 

In sum, items with relative measurement invariance but absolute bias are not 
multidimensional and may be valid within-group indicators of the construct to be 
measured. Also, the fact that such items occur may lead to theory formation on 
item response processes outside the cognitive realm. The question then becomes 
what the practical implications of these findings are, and how they could be of help 
in practical situations. Should we drastically change the way we make personal-
ity tests? Should we be telling subjects not to make within group comparisons? 
In our opinion, no definitive answers to these questions can, at present, be given. 
How often the response processes we outlined occur, and which item features and 
person characteristics trigger these processes, are questions open to empirical re-
search. Obviously, however, the relation between item response models and item 
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response processes is not clear in domains outside cognitive testing. Within the field 
of cognitive testing, there is at least a raw image of the response processes that lead 
to item responses, and to a certain extent these processes have been successfully 
modeled (see Embretson, 1994, for a good example). Retaining items with relative 
measurement invariance in cognitive tests does not seem to be a very good idea, 
for there is little theoretical foundation for such practice. In fact, selecting items 
with relative measurement would technically be comparable to the item selection 
rules specified in the Golden Rule Settlement (McAllister, 1993), where the Educa-
tional Testing Service agreed to construct tests by giving priority to items showing 
the least differences between groups. Most psychometricians would agree that this 
was not a psychometrically sound basis for item selection, because it was based on 
the presumption tha t all group differences in the performance on these tests reflect 
bias. The main reason why retaining items with absolute bias in cognitive tests is 
not a very good idea, however, is precisely because relative measurement invariance 
conflicts with the construct definitions. Indeed, if one approaches such items from 
the perspective of cognitive processes in problem solving, the nature of these pro-
cesses suggests, or even prescribes, that absolute measurement invariance should 
hold. This is in sharp contrast with construct definitions and response processes 
outside the realm of cognitive testing. In fact, we find it somewhat disturbing tha t 
the demands of measurement invariance are often generalized to the measurement 
of personality trai ts and at t i tudes, while this paper clearly shows how a rather sim-
ple, and not implausible, response process would destroy measurement invariance 
in the classical sense. Coupled with the fact tha t , in many research areas, there is 
very little theory on what happens between item administrat ion and item response, 
relative measurement invariance may be an important concept, although we cannot, 
at present, determine its scope or usefulness in practical situations. However, we 
can safely conclude tha t the relation between construct validity and measurement 
invariance is ra ther intricate, since items without measurement invariance may very 
well be valid indicators of the construct in question. Therefore, the relation between 
measurement invariance and construct validity needs to be reconsidered, and theory 
formation on this subject is called for. Especially, the need to extend the work of 
Embretson (1994), on the relation between cognitive theories on response processes 
and latent trai t models, to fields other than cognitive testing, seems pertinent. 
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8.8 Appendix 

Evaluating measurement invariance for continuous item responses requires testing 
the strict factorial invariance model of Meredith (1993). This model involves the 
modeling of mean structures through multigroup analysis as introduced by Sörbom 
(1974). Strict factorial invariance with respect to a selection variable V (here we 
take V to indicate group) holds if 

yv = r + Aa v (8.19) 

and 
S v = A* V A' + A (8.20) 

where the yv is a vector of means on observed variables in group v; r is a vector 
of intercepts; A is a matrix of factor loadings; av is the vector of factor means for 
group v. E v is the covariance matrix of the observed variables in group v; 3>v is the 
covariance matrix of the factors in group v; and A is a diagonal matrix containing 
the variances of the residuals. The strict factorial invariance model specifies that 
only the factor means and variances may differ between groups. Meredith (1993) has 
shown that strict factorial invariance with respect to V implies weak measurement 
invariance with respect to V. These conditions can be weakened to conditions of 
strong factorial invariance by allowing the matrix A to vary over groups. Strong 
factorial invariance, however, no longer implies weak measurement invariance, so 
that we limit our attention to the strict factorial invariance model. 

We take a simple unidimensional model with one latent variable as the point of 
departure. This renders av and * v scalars. The model is identified by setting one 
of the elements in A to one and the factor mean av to zero in one of the groups; av 
is free to vary in the other groups. This is the unidimensional model fitted to the 
data in Illustration 2. We modify the model to cope with relative items as follows. 
Partition the observed variables into a set of absolute items and a set of relative 
items. For the absolute items, the strict factorial invariance model is maintained as 
above. We term the original single factor the absolute factor. For the relative items 
we invoke a new factor, so that av is now a 1 x 2 vector and * v a 2 x 2 symmetric 
matrix. The relative items are allowed to load only on this second factor. We 
term this factor the relative factor. To ensure that the relative factor is the within-
group standardized variant of the absolute factor we add the following restrictions 
to the model. First, we require that the relative factor has the standard normal 
distribution in each group. Second, we require that the relative factor correlates 
unity with the absolute factor within each of the groups. This gives the restrictions 

a = [av 0] (8.21) 

and 

Equation 8.22 is a nonlinear restriction that can be readily implemented in LISREL 
(Jöreskog k Sörbom, 1993). However, admissability checks should be turned off 

f$~v 1 
.22) 
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because * is not positive definite. The restriction ensures that the correlation r12 
between the absolute and the relative factor is equal to r12 = 0i2/W>i x <p2 = 
V<h/V<Pi x 1 = 1, as required. For the relative items these constrains imply the 
following equations: 

yv = r (8.23) 
and 

S v = AA' + A. (8.24) 

Thus, the vector of means as well as the covariance matrix are invariant over groups 
for the relative items. This parallels the dichotomous case where relative measure-
ment implies that p-values for relative items are invariant over groups. Because for 
the absolute items in the model the original equations 8.19 and 8.20 hold, the part 
of the covariance matrix containing covariances between absolute and relative items 
looks as follows: For an absolute item j and a relative item k, the element ajk of 
S v is equal to XjXk^/^. The model with restrictions 8.21 and 8.22 is the relative 
model fitted to the data in Illustration 2. 
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10. NEDERLANDSE SAMENVATTING 

Conceptuele problemen in de 
psychometrie 

Meten speelt een belangrijke rol in de psychologie. Of het nu gaat om het toepassen 
van persoonlijkheidstests in sollicitatieprocedures, om onderzoek naar de effec-
tiviteit van psychotherapie, of om het vaststellen van verschillen in intelligentie 
tussen bepaalde bevolkingsgroepen: de psycholoog meet veel en graag. Het meten 
van psychologische eigenschappen zoals intelligentie, persoonlijkheid, of mate van 
depressiviteit, verloopt ongeveer als volgt. Personen worden geconfronteerd met 
een aantal vragen, problemen, of stellingen. Die worden in de psychologie 'items' 
genoemd. Mensen geven dan een respons op die items. Vervolgens worden de re-
sponsen op de verschillende items op een of andere manier gecombineerd tot een 
totaalscore. Die totaalscore wordt dan beschouwd als een meting van de psychol-
ogische eigenschap in kwestie. Het idee achter zo'n procedure is eenvoudigweg dat 
personen die depressiever zijn eerder 'ja' zullen antwoorden op de vraag 'Slaapt 
U slecht?', en dat intelligentere mensen eerder zullen zien welk cijfer er moet vol-
gen in de reeks '1 , 1, 2, 3, 5, 8, ..'. Depressieve mensen zullen meer en ernstiger 
depressieve klachten hebben, en intelligentere mensen zullen meer en moelij ker prob-
lemen oplossen. Derhalve zal variatie in testscores samenhangen met variatie in de 
te meten eigenschap. Dat is het basisidee van meten in de psychologie. 

Helaas zijn de scores op psychologische tests niet altijd even makkelijk te in-
terpreteren. Hoe weet de psycholoog bijvoorbeeld dat de IQ-test daadwerkelijk 
intelligentie meet? En zo ja, hoe precies is de meting dan? Hoe kan hij dat na-
gaan? Wat is dat eigenlijk, intelligentie? Het beantwoorden van dit soort vragen 
is erg belangrijk, maar wordt bemoeilijkt door het feit dat psychologen geen goed 
inzicht hebben in de processen die in het hoofd plaatsvinden op het moment dat 
een persoon een vraag beantwoordt. Kort gezegd komt het erop neer dan men niet 
precies weet hoe een persoon tot zijn antwoord komt, en daardoor is onduidelijk 
wat er gemeten wordt. Dat is niet het enige probleem. Omdat mensen altijd wel 
antwoord geven op vragen als ze daartoe worden aangespoord - ook als die vragen 
helemaal niets met de te meten eigenschap te maken hebben - en omdat mensen 
niet bijster consistent zijn - sommige mensen maken bijna alle moeilijke vragen in 
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een intelligentietest goed, maar missen nu net dat ene makkelijke item - kunnen 
testscores niet beschouwd worden als een perfecte meting van psychologische eigen-
schappen. Daarom worden, om na te gaan hoe goed de metingen zijn, statistische 
modellen gebruikt. 

Als psychologen echt wisten hoe de geobserveerde responsen op items samenhin-
gen met de te meten eigenschap, dan zouden zulke modellen wellicht niet nodig zijn. 
Maar ze zijn dus wel nodig. En het interessante probleem doet zich nu voor, dat de 
psycholoog in de analyse van testresultaten wordt gedwongen bepaalde veronder-
stellingen te doen over de verhouding tussen de testscores en de te meten eigenschap. 
Die veronderstellingen zitten in de statistische modellen, maar hoeven niets met in-
houdelijke theorie te maken te hebben. Omdat er meerdere soorten modellen zijn, 
moet de psycholoog er een kiezen. Daarmee kiest hij, meestal impliciet, ook voor 
een bepaalde visie op wat een psychologische eigenschap is en hoe die te maken heeft 
met de testscores. Over die visies gaat dit proefschrift. Ik bekijk een aantal veel 
gebruikte, dan wel vaak gepropageerde, wiskundige modellen, en daarbij stel ik mij 
de vraag: Als een psycholoog voor model X zou kiezen, wat voor een relatie tussen 
de eigenschap (intelligentie) en de testresponsen (IQ-scores) moet hij dan veron-
derstellen? Drie modellen komen daarbij aan de orde: het klassieke testmodel, het 
latente-variabelenmodel, en het representationele meetmodel. Vervolgens worden 
de relaties tussen de modellen besproken. Tenslotte neem ik uit ieder model enkele 
ideeën die mij plausibel lijken, en voeg ik die samen tot een geïntegreerde visie op 
het meetproces, en in het bijzonder het validiteitsbegrip. 

In Hoofdstuk 2 komt het klassieke testmodel aan de orde. Dit model richt zich 
op een opdeling van geobserveerde scores in een ware score en een meetfout. De 
ware score wordt beschouwd als de verwachtingswaarde van de geobserveerde scores, 
en de meetfout is wat er overblijft. Dat gaat echter niet zomaar. Om met verwach-
tingwaardes te kunnen werken moeten de testscores aan bepaalde eigenschappen 
voldoen. Meer specifiek moeten zij opgevat kunnen worden als het resultaat van een 
kansexperiment. Een kansexperiment is bijvoorbeeld een worp met een dobbelsteen. 
Het is echter overduidelijk dat testresponsen niet beschouwd kunnen worden als het 
resultaat van een kansexperiment: Het oplossen van een probleem in een IQ-test 
heeft, als proces, niets gemeen met het gooien van een dobbelsteen. Dat realiseren 
klassieke testtheoretici zich ook, en daarom hebben zij een gedachte-experiment 
bedacht. Stel, zo zegt de klassieke testtheoreticus, dat we mensen zouden kunnen 
hersenspoelen tussen twee testafnames door, en hen dan iedere keer opnieuw de test 
laten maken. Dan zouden ze niet iedere keer dezelfde score halen. Die score zal 
dan toevallige variatie vertonen. En in dat geval kunnen we de verwachte testscore 
opvoeren als de ware score: Die ware score is dan de gemiddelde score over een 
zeer lange reeks herhaalde testafnames - met tussen iedere twee testafnames een 
hersenspoeling. 

De klassieke testtheoreticus heeft nu iets heel vreemds gedaan. In plaats van 
bepaalde statistische patronen waar te nemen en daar een model bij te verzinnen, 
heeft hij een model bedacht en daar vervolgens de patronen bij verzonnen die erbij 
horen. Dat die patronen niet alleen onwaarschijnlijk zijn, maar in feite helemaal 
niets met psychologische processen te maken hebben, devalueert de status van het 
model en daarmee van de ware score. De ware score heeft op zichzelf niets met 
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psychologische eigenschappen te maken, en al helemaal niets met de waarheid. De 
ware score heeft uitsluitend te maken met de test. en zelfs daarvoor moet nog be-
hoorlijk wat theoretische acrobatiek uit de kast gehaald worden. Omdat de ware 
score uitsluitend gedefinieerd is in termen van herhaalde testafnames, moet de psy-
choloog die intelligentie ziet als een ware score ook intelligentie definiëren in termen 
van herhaalde testafnames. In de wetenschapsfilosofie heet zo'n opvatting opera-
tionalistisch. Een operationalist zegt: Intelligentie is volledig gedefinieerd in termen 
van de IQ-test. Dat is precies zoals de klassieke testtheorie de ware score definieert. 
Omdat niemand in de psychologie operationalist is, is het raadselachtig - om niet 
te zeggen inconsequent - dat het klassieke model het meest gebruikte testmodel 
is. Nog vreemder is dat veel onderzoekers denken dat verschillen in ware scores 
op intelligentietests hetzelfde zijn als verschillen in intelligentie. Ik laat zien dat 
deze opvatting zelfs met de beste wil van de wereld niet houdbaar is. Dat komt 
niet zozeer omdat de klassieke testtheorie de relatie tussen testscores en psycholo-
gische eigenschappen verkeerd voorstelt, maar omdat zij die relatie helemaal niet 
beschouwt. Ik concludeer dat het klassieke testmodel, hoewel wiskundig elegant 
en makkelijk in het gebruik, niet geschikt is om de relatie tussen psychologische 
eigenschappen en testscores te conceptualiseren. 

Een tweede kandidaat wordt besproken in Hoofdstuk 3. waar het latente-
variabelenmodel aan de orde komt. Dit model neemt aan dat variatie in verwachte 
testscores - die in sommige visies gezien worden als ware scores - een functie is van 
variatie op een niet direkt waargenomen, dus latente, variabele. De psycholoog zou 
ervoor kunnen kiezen om psychologische eigenschappen te beschouwen als latente 
variabelen. In dat geval moet hij wel van tevoren aangeven wat de relatie tussen die 
latente variabelen en de testscores is. Om dat te kunnen doen moet hij aannemen 
dat deze variabelen min of meer onafhankelijk van de gebruikte test bestaan, en een 
bepaalde structuur hebben. In de wetenschapsfilosofie staat zo'n visie bekend als 
realisme. Omdat de aannames van latente-variabelenmodellen soms nogal streng 
zijn, wordt weleens gezegd dat onderzoekers voor het specificeren van zulke modellen 
niet hoeven aan te nemen dat latente variabelen zelfs maar zouden kunnen bestaan. 
Die visie bestrijd ik met een aantal argumenten. Het belangrijkste argument is dat 
het vrijwel onmogelijk is de latente variabele volledig te definiëren in termen van 
de gebruikte test. Er blijven altijd keuzes over betreffende de structuur van het 
model die voor rekening van de psychologie komen, omdat ze nergens dwingend uit 
volgen. Om die aannames te kunnen motiveren moet de psycholoog aannemen dat 
psychologische eigenschappen onafhankelijk van de meetprocedure bestaan. 

De vraag die zich daarop voordoet is: Als latente variabelen zouden bestaan, 
wat voor een relatie zouden ze dan met de testscores hebben? Een mogelijke inter-
pretatie is dat die relatie als oorzakelijk moet worden gezien: variatie op de latente 
variabele veroorzaakt dan variatie in de testscores. Ik laat zien dat zo'n oorzakelijke 
interpretatie wel geformuleerd kan worden, maar dat deze voor de meest gebruikte 
modellen uitsluitend beschouwd kan worden in termen van verschillen tussen per-
sonen: Je kunt wel zeggen dat latente verschillen tussen personen oorzakelijk re-
levant zijn voor geobserveerde verschillen tussen personen, maar dat betekent niet 
dat de latente variabele bij een individu een causale rol speelt. Deze laatste hy-
pothese wordt in het model niet getoetst. Deze situatie is niet geheel bevredigend, 
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omdat psychologische theorieën vaak juist wel op individueel niveau geformuleerd 
zijn. Ik geef daarom op een aantal punten aan welke richting het onderzoek uit 
zou kunnen om verschillen tussen personen te relateren aan processen binnen per-
sonen. De conclusie van het hoofdstuk is, dat een realistische interpretatie van 
latente-variabelenmodellen, mits niet verkeerd opgevat, een redelijk beeld van het 
meetproces geeft. 

In het Hoofdstuk 4 van het proefschrift komt een zelden gebruikt, maar vaak 
gepropageerd, alternatief naar voren voor zowel het ware score model als het latente-
variabelenmodel. Dit model heet het representationele meetmodel. Het representa-
tionalisme beschouwt meetschalen als weergaves (representaties) van geobserveerde 
relaties. Omdat niet hoeft worden aangenomen dat er zoiets als 'intelligentie' in 
de werkelijkheid bestaat, lijkt deze strategie veel op een stroming die in de weten-
schapsfilosofie als empiricisme bekend staat. De onderzoeker observeert patronen in 
de data, en representeert deze patronen in een wiskundige constructie, namelijk de 
meetschaal. Omdat de onderzoeker deze schaal expliciet zelf construeert, moet de 
psycholoog die intelligentie opvat als een meetschaal deze psychologische eigenschap 
opvatten als zijn eigen constructie. Intelligentie is dan dus niet iets, dat onafhanke-
lijk van de onderzoeker in de wereld bestaat, maar iets dat de onderzoeker zelf 
geconstrueerd heeft. 

Hoewel het representationalisme zowel wiskundig als filosofisch gezien zeer krach-
tig is, kleven er een aantal bezwaren aan die de benadering minder geschikt maken 
voor het meten van psychologische eigenschappen. Geobserveerde verschillen tussen 
mensen zijn nogal chaotisch, en in een strikte interpretatie van het representationa-
lisme moeten we daarom concluderen dat psychologische metingen zeldzaam zijn of 
zelfs helemaal niet bestaan: De structuur die voor gebruik van het woord 'meting' 
noodzakelijk is wordt in psychologische testscores namelijk vrijwel niet aangetroffen. 
De eisen die het representationalisme stelt zijn echter zo streng, dat ze op de keper 
beschouwd bijna ieder vorm van meten uitsluiten. Een belangrijke reden daarvoor 
is dat het model principiële bezwaren tegen het introduceren van meetfouten heeft. 
Daardoor kan het model moeilijk in statistische termen geformuleerd te worden. Als 
dat wel gebeurt, dan wordt het model een speciaal soort latente-variabelenmodel, 
en wordt realisme over psychologische eigenschappen door de achterdeur weer bin-
nen gebracht. Wanneer dat realisme geaccepteerd wordt, dan is er echter geen 
goede reden om de restricties, die voor het representationalisme noodzakelijk zijn, 
te handhaven, waardoor de hele onderneming in het water valt. 

Omdat het representationalisme vrijwel geen praktische toepassingen in de psy-
chologie kent, en gebaseerd is op een sterk geïdealiseerd beeld van meten, stel ik 
voor het representationalisme niet als een praktisch model te beschouwen, maar 
als een geïdealiseerde reconstructie van het meetproces zoals het plaatsvindt in de 
natuurwetenschappen. Uit het feit dat metingen in de natuurkunde min of meer 
gereconstrueerd kunnen worden in termen van het representationele model, volgt 
echter niet dat psychologen dat model in de praktijk van testanalyse moeten ge-
bruiken. Daarvoor zijn de psychologie en de natuurkunde te verschillend. Recente 
pogingen van een aantal theoretici om het model als normatief model voor de psy-
chologische praktijk te introduceren wijs ik daarom af als ongegrond. 

Hoewel de besproken modellen in filosofisch opzicht verschillend zijn, lijken ze 
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formeel gezien soms erg sterk op elkaar. In Hoofdstuk 5 bespreek ik de voorwaar-
den waaraan moet worden voldaan om de modellen met elkaar in overeenstemming 
te laten zijn. Uit deze analyse blijkt, dat de modellen elkaar niet hoeven tegen te 
spreken, maar dat ze zich wel op een ander gedeelte van het meetproces concen-
treren. Het latente-variabelenmodel kan gezien worden als een hypothese over hoe 
de verschillen in testscores tot stand komen, het ware score model behandelt de 
structuur van de meetfouten, en het representationele model geeft een representatie 
van relaties tussen ware scores door die relaties af te beelden in een meetschaal. Om 
deze verbinding tot stand te kunnen brengen, moet echter worden aangenomen dat 
verwachtingswaardes op het individuele niveau betrekking hebben. Dat vereist een 
soortgelijk gedachte-experiment als in de klassieke testtheorie. Het is echter ook 
mogelijk om verwachtingswaardes te zien als gemiddelden, die gedefinieerd zijn op 
subgroepen van mensen met dezelfde positie op de latente variabele. Het proces dat 
tot de respons op een vraag leidt wordt dan niet opgevat als een kansexperiment. 
In deze interpretatie hebben de modellen vrijwel niets met elkaar te maken. Het 
ware score model kan dan namelijk niet worden gedefinieerd, en daarom werkt het 
representationele meetmodel ook niet meer: als er geen verschillen in ware scores 
zijn om af te beelden in de meetschaal, dan kan die meetschaal niet worden gecon-
strueerd. Het latente-variabelenmodel kan dan nog wel opgesteld worden, maar 
is dan niet langer een model voor het item-respons proces, maar voor verschillen 
tussen subpopulatiegemiddelden. 

De vraag die zich nu voordoet is: wat is een zinnige manier om naar de relatie 
tussen psychologische eigenschappen en testscores te kijken? In het tweede gedeelte 
van hoofdstuk 5 maak ik met betrekking tot deze vraag een aantal keuzes. Het ware 
score model geeft helemaal geen beeld van de betreffende relatie, behalve in een op-
erationalistische interpretatie van psychologische eigenschappen, en aangezien die 
interpretatie onzinnig is moet zij afgewezen worden. Het representationele model 
is ongeschikt omdat het nauwelijks statistisch geformuleerd kan worden, en de aan-
name dat de relatie tussen psychologische eigenschappen en testscores determinis-
tisch is al te sterk. In een nadere beschouwing wordt echter opgemerkt dat het rep-
resentationele model, strikt genomen, de aanname doet dat experimentele controle 
mogelijk is. En die experimentele controle kan gezien worden als een interventie in 
een causaal systeem. Wanneer het model statistisch geformuleerd wordt, dan moet 
het worden uitgebreid wordt met latente variabelen en een realistische interpretatie. 
Hoewel experimentele controle over latente variabelen zowel praktisch onmogelijk 
als een inhoudelijk theoretisch ongemotiveerde aanname is, kan de zwakkere aan-
name, dat de relatie tussen latente variabele en geobserveerde score causaal van 
aard. is wel gehandhaafd worden. Dat betekent dat het latente-variabelenmodel en 
het representationalisme zeer dicht bij elkaar komen. In feite komt het erop neer, 
dat het niet onredelijk is dat, om van een meting van een psychologische eigen-
schap te kunnen spreken, aan twee voorwaarden voldaan moet zijn: de betreffende 
psychologische eigenschap moet bestaan, en variatie op deze eigenschap moet de 
oorzaak zijn van variatie in de testscores. 

Deze conclusie wordt in Hoofdstuk 6 gebruikt om een nieuwe inhoud te geven 
aan het validiteitsbegrip. De validiteitsliteratuur houdt zich bezig met de vraag: 
meten psychologische tests de juiste psychologische eigenschappen? Hoewel er zeer 
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veel geschreven is over onderzoeksprocedures om dit na te gaan, is er in mijn ogen 
te weinig aandacht geweest voor de vraag wat het betekent als je zegt dat IQ-tests 
intelligentie meten. Ik beweer dat deze stelling waar is als verschillen in intelligen-
tie verschillen in testscores veroorzaken, en anders niet. Deze opvatting geeft een 
inhoud aan het validiteitsbegrip die radicaal afwijkt van de huidige consensus in 
de literatuur. Waar de literatuur de betekenis van testscores in termen van een 
theorie als definiërende karakteristiek van het validiteitsbegrip aanvoert, is in mijn 
opvatting niet de betekenis, maar het bestaan van psychologische eigenschappen 
cruciaal. Waar de literatuur het heeft over de overeenstemming tussen scores op 
verschillende tests, voer ik de causale relatie tussen eigenschap en score aan als 
essentieel element van het validiteitsbegrip. Waar de validiteitsliteratuur validiteit 
ziet als een eigenschap van de interpretatie van testscores, zie ik validiteit als een 
eigenschap van de test zelf. En waar in de literatuur geprobeerd wordt vrijwel ieder 
belangrijk aspect van testgebruik onder het validiteitsbegrip te laten vallen, beperk 
ik de betekenis van het begrip aanzienlijk: validiteit gaat over de vraag of de test de 
bedoelde eigenschap meet, en nergens anders over. Relevante andere vragen, zoals 
de vraag hoe precies een test de bedoelde eigenschap meet, laat ik voor rekening 
van de technisch georiënteerde psychometrie, die er veel meer over te zeggen heeft 
dan de filosofisch georiënteerde validiteitsliteratuur. Deze voorstelling van zaken 
leidt tot een geheel andere kijk op de vraag waar het validiteitsprobleem in de psy-
chologie vandaan komt. Dit probleem ontstaat misschien niet zozeer doordat de 
psycholoog in veel gevallen niet weet wat een test meet, maar doordat hij niet goed 
weet wat hij wil meten. 
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