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Abstract

Psychometrics is a scientific discipline concerned with the construction of measurement models for psychological data. In
these models, a theoretical construct (e.g., intelligence) is systematically coordinated with observables (e.g., IQ scores). This is
often done through latent variable models, which represent the construct of interest as a latent variable that acts as the
common determinant of a set of test scores. Important psychometric questions include (1) howmuch information about the
latent variable is contained in the data (measurement precision), (2) whether the test scores indeed measure the intended
construct (validity), and (3) to what extent the test scores function in the same way in different groups (measurement
invariance). Recent developments have focused on extending the basic latent variable model for more complex research
designs and on implementing psychometric models in freely available software.

Definition

Psychometrics is a scientific discipline concerned with the
question of how psychological constructs (e.g., intelligence,
neuroticism, or depression) can be optimally related to observ-
ables (e.g., outcomes of psychological tests, genetic profiles,
neuroscientific information). This problem is most often
approached through the construction of measurement models,
in which the construct of interest is represented as a latent
variable that acts as a common determinant of a set of observ-
able variables (Bollen, 2002; Sijtsma, 2011). Psychometrics is
a highly interdisciplinary field, with connections to statistics,
data theory, econometrics, biometrics, measurement theory,
and mathematical psychology. Psychometricians may be
involved in the design of psychological tests, the formalization
of psychological theory, and the construction of data-analytic
models. The latter activity has, in the past century, been the
main focus of the discipline, especially through the development
of test theory and associated latent variable modeling tech-
niques. The main professional organization of psychometricians
is the Psychometric Society, which publishes the journal Psycho-
metrika and organizes the annual International Meeting of the
Psychometric Society.

History

The birth of psychometrics is usually situated at the end of the
nineteenth century, when Francis Galton set up the Antropo-
metric Laboratory with the intention to determine psycholog-
ical attributes experimentally. Among the first constructs of
interest to be subjected to measurement were keenness of sight,
color sense, and judgment of eye (Galton, 1884). Galton
attempted to measure such attributes through a variety of
tasks, recording performance accuracy as well as reaction
times. In the early twentieth century, the interest in
measuring human qualities intensified greatly when the
United States implemented a program to select prospective
soldiers using tests (the Army Alpha and Beta) that purported
to measure a range of abilities deemed relevant for military
performance. Such tests produced a great deal of data, which

led to questions that inspired the birth of psychometric
theory as we currently know it: how should we analyze
psychological test data? Which properties determine the
quality of a psychological test? How may we find out
whether a test is suited for its purpose?

Two important properties of tests were almost immediately
identified (Kelley, 1927). The first referred to the question of
whether a test produced consistent scores when applied in the
same circumstances. This question introduced the notion of
reliability. In general, a measurement instrument is reliable to
the extent that it yields the same outcomes when applied to
persons with the same standing of the measured attribute
under the same circumstances (e.g., to what extent does an
IQ test produce the same score if administered to people
with the same level of intelligence?). The second important
question is whether the test measures what it purports to
measure. This question defines the concept of validity.
Although different views of validity exist (see later text), the
textbook definition is that a measurement instrument is valid
if and only if it measures what it should measure (e.g., an IQ
test is valid if and only if it actually measures intelligence).
The concepts of reliability and validity are still among the
most important ones in the evaluation of psychological tests,
although they have a very different status in psychometric
theory. The definition of reliability is widely accepted, but the
definition of validity is widely contested.

The development of reliability theory in the first half of the
twentieth century culminated in the work of Lord and Novick
(1968), who presented the currently accepted definition of
reliability as a signal-to-noise ratio (the ratio of true score
variance to observed score variance). The concept may be
somewhat differently conceptualized in different theoretical
frameworks (e.g., as measurement precision in latent variable
theory (Mellenbergh, 1996) and as generalizability in
generalizability theory (Cronbach et al., 1972)). However, in
such cases Lord and Novick’s definition typically follows as
a special case, which indicates the consistency of the general
psychometric framework. Reliability can, under appropriate
assumptions, be estimated in various ways; for instance, from
the correlation between two test halves, from the average
correlation between test items, and from the correlation
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between two administrations of the same test at different times.
Strictly speaking, such reliability estimates signify properties of
test scores rather than of tests themselves (e.g., administering
the test to different populations will ordinarily lead to
different values for reliability). Although some discussion
may exist about how to optimally estimate reliability, or
about which coefficient should be preferred in a given
context (Sijtsma, 2009), there is little discussion about how
to define reliability theoretically or on how to determine it
empirically.

The opposite holds for validity. There are no widely
accepted methods to determine whether a test is valid (or to
estimate its degree of validity, for theories that conceptualize
validity as a matter of degree). In fact, there is no agreement on
what validity refers to (Borsboom et al., 2004; Lissitz, 2009;
Sijtsma, 2011; Newton, 2012). These disagreements result
from the fact that the question of whether a test measures
what it purports to measure raises fundamental questions
about the nature of psychological constructs themselves. For
instance, can psychological constructs literally be measured,
in the same way that length and mass are (Michell, 1999)?
If not, what notion of measurement should be invoked?
Should psychological constructs be given a realist interpre-
tation, or are they merely summaries of data (Borsboom,
2005; Cronbach and Meehl, 1955; Trout, 1999)? Does it
make sense to talk about the validity of tests at all, or should
we rather talk about the validity of interpretations of test
scores or of uses of test scores (Newton, 2012)? Should the
societal consequences of test use be counted in the
evaluation of validity (Messick, 1989)? Perhaps the only
conclusion about validity that is widely accepted is that it is
the most problematic among the psychometric concepts.

It is an interesting fact of scientific history that psychometric
theory and practice developed largely in the absence of defin-
itive answers to these fundamental questions. Perhaps as
a result of the inability to come to grips with the slippery
constructs of psychological science, psychometrics instead took
its lead from statistics and from general ideas on how
measurement should be conceptualized. In doing so, it became
a largely technical discipline, which identified as its main task
the construction of measurement models for psychological
data. Usually, such models contain a ‘stand-in’ for the
psychological construct to be measured (e.g., the expectation of
the observed scores – the ‘true score’ – or a latent variable that is
assumed to ‘underlie’ the responses to test items); they do not,
however, contain psychological theory.

Although the detachment of modeling techniques and
substance matter is occasionally lamented in psychometric
circles, it is undeniable that the statistical models developed
along statistical, data-analytic lines define some of the most
important contributions of psychometric theory to science in
general: classical test theory (Lord and Novick, 1968), latent
class analysis (Lazarsfeld and Henry, 1968), the congeneric
model (Jöreskog, 1971), the modern test theory models of
Rasch (1960) and Birnbaum (1968), and the nonparametric
item response models (Mokken, 1971). After these models
had been constructed, the development of software to fit
and estimate them became one of the main topics of
psychometric research, and psychometricians played
a leading role in the development of estimation algorithms

(e.g., Bock and Aitkin, 1981), model fit tests (Andersen,
1973), software for test analysis (Zimowski et al., 1996;
Thissen, 1983; Wilson et al., 1991; Bowler et al., 2007), and
general latent variable modeling (e.g., Jöreskog and Sörbom,
1974; Muthén and Muthén, 1998; Bentler, 2000; Arbuckle,
2010; Vermunt and Magidson, 2000). This development
took place during the last three decades of the twentieth
century, at the end of which most of the basic psychometric
models could be estimated and fitted.

Main Concepts of Standard Psychometric Theory

Psychometric measurement models relate a latent structure to
a set of observed variables by mapping positions in the latent
structure to distributions or densities of the observed variables.
This is usually done by specifying the conditional distribution
function of the observables, given the latent structure. Thus, the
general framework can be thought of in terms of a simulta-
neous regression of the observed variables on a latent variable
or a set of latent variables. Many different models can be
derived from this idea through variations on (1) the form of the
latent structure (e.g., a continuous line or a set of latent classes),
(2) the form of the regression function (e.g., a step function or
a logistic function), and (3) the distribution or density
appropriate to the observations (e.g., a binomial distribution
or a normal density). For instance, if the latent structure is
a unidimensional continuum, the regression function is linear,
and the observables follow a normal density, the resulting
model is the linear common factor model (Jöreskog, 1971); if
the latent structure is a unidimensional continuum, the
regression function is logistic, and the observables follow
a binomial distribution, we get the two-parameter logistic
model (Birnbaum, 1968); and if the latent structure is
categorical and the observed variables are binary, we obtain
the latent class model (Lazarsfeld and Henry, 1968).
Mellenbergh (1994b) provides a systematic overview of the
connections between these and other models.

The latent structure is generally viewed as a representation
of the construct to be measured (e.g., intelligence), while the
observed scores typically represent concrete behavioral
responses (e.g., answers to items in an IQ test). As a whole, the
psychometric model thus coordinates the correspondence
between observational and theoretical terms, and in that sense
is a measurement model. It is important to note that the notion
of measurement intended here is broad and covers the entire
spectrum from categorical unordered models to quantitative
continuous models. Thus the meaning of the term ‘measure-
ment’ is not limited to the classical interpretation of the term,
which implies quantitative continuous structure (Michell,
1986), although models that are consistent with stricter
interpretations may be derived from the general model as
a special case (e.g., Rasch, 1960). Thus, the psychometric
model is a measurement model in the sense that it co-
ordinates theory with observation, but not in the sense that it
assumes that human behavior can be successfully analyzed in
terms of quantitative laws.

Measurement precision. Reliability relates to the psychometric
model via the concept of measurement precision. The
measurement precision of test scores is inversely related to the
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variance of the observed scores conditional on a given position
in the latent structure (Mellenbergh, 1996). Thus, the higher
the variance of the conditional distribution of the
observables, the lower the measurement precision of the
observables. Note that measurement precision may, but need
not, be identical for different positions of the latent structure.
For instance, in the linear factor model, which has
homoscedastic residuals, measurement precision is identical
for all values of the latent variable; in contrast, in the Rasch
(1960) model, it is highest for the latent position where the
logistic regression of the observable has its inflection point
and lower for positions father away from that point; note
also that, at the point where this curve has its lowest
measurement precision, it yields maximal information. The
reliability of test scores, as proposed in classical test theory
(Lord and Novick, 1968), is an unconditional index of
measurement precision that can be straightforwardly derived
from the conditional definition (Mellenbergh, 1996).

Item Response Theory. If the observed variables are responses
to test items (e.g., items in an IQ test), then the measurement
model falls under the scope of item response theory (IRT),
a subfield of psychometrics that has come to play an important
role in the analysis of educational tests. In IRT, the function that
specifies the regression of the observed variables on the latent
structure is known as an item characteristic curve (ICC).
Usually, IRT models assume a unidimensional and continuous
latent structure, which means the ICC is a smooth curve as in
Figure 1. Because items in educational testing are typically
scored dichotomously (1: correct, 0: incorrect), the ICC is
bounded from above and from below, and hence is often
modeled using a nonlinear function. The slope of the ICC at
a given point on the latent scale is proportional to the ability of
the item to discriminate between positions above and below
that point, and thus determines the amount of information
that the item yields at that point. Plotting the item information
against the latent variable then gives the item information
function (IIF).

Adaptive testing. The IIF plays an important role in psycho-
metrics because it can be used to regulate the selection of items.
This idea forms the basis for adaptive testing (Van der Linden
and Glas, 2000), a strategy of adaptively assembling tests that
has become increasingly important with the advent of
computerized test administration. In adaptive testing, items
are administered sequentially and selected for administration
adaptively, i.e., on the basis of the previous item responses
of the respondent. This typically works as follows: at each
point in the item administration process, examinee ability
(the position in the latent structure) is estimated on the basis
of the item responses given so far. The next item to be
administrated is then chosen on the basis of the slope of
the IIF at the estimated examinee ability, so that the
administered items yield optimal information. In this way,
tests can be shortened without affecting reliability.

Measurement invariance. Test scores are often used to select
individuals (e.g., in job selection, student placement). Typi-
cally, these selection processes operate on populations that are
heterogeneous with respect to background variables like sex
and ethnicity. In these cases, considerations of fairness suggest
that the test should function in the same way across different
subpopulations, in the sense that it should not produce
systematic bias in the test scores against a certain group. Such
bias may, for instance, arise when an IQ test contains questions
that are easier for test takers with a specific background
regardless of their intelligence level. This may, for instance,
occur if the test contains general knowledge questions that
draw on a specific cultural background, so that they are more
difficult for ethnic minorities for reasons independent of
intelligence level. The concept of measurement invariance
(Mellenbergh, 1989; Meredith, 1993) formalizes this idea and
allows for testing it against empirical data.

Alternative psychometric models. Although the latent variable
model is the primary race horse of current psychometrics, it is
not the only available model to connect theoretical terms to
observations. An important alternative in the psychometric
literature concerns multidimensional scaling (MDS). MDS is
a psychometric tool to infer the number of underlying
dimensions in proximity data, i.e., data consisting of measures
of similarity among pairs of stimuli (e.g., the degree in which
different facial expressions are judged to be similar). Depend-
ing on whether the measurement scales of the similarity
measures are either continuous or ordinal, one speaks of metric
MDS (Torgerson, 1952) or nonmetric MDS (Shepard, 1962),
respectively. In MDS, individual differences are taken into
account by weighting the underlying dimensions differently
across subjects (Carroll and Chang, 1970). By doing so, each
subject receives a different weight for each dimension
indicating which dimensions are more important for
a subject in deciding which stimuli are similar. These weights
enable identification of different subtypes of subjects. An
important instance of MDS with individual differences is
unfolding analyses, which is suitable for preference data. In
unfolding analyses (Coombs, 1964), each subject is assumed
to have an ideal point on the dimensions underlying the
preference data. When a given stimulus is close to the
subjects ideal point, that stimulus is preferred more.

In addition to MDS, other possibilities to make the
connection between theory and data are by (1) representing the
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Figure 1 Item response theory relates the probability of a correct
response to an item to a continuous latent variable through item char-
acteristic curves (ICCs). When ICCs are parallel, as in this figure, items
located further to the right have a lower probability of a correct item
response for a given level of the latent variable and are typically interpreted
as more difficult.
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construct as a common effect of the observed variables (Bollen
and Lennox, 1991), (2) taking the construct to be a universe of
behaviors, of which the observables are assumed to be a sample
(Cronbach et al., 1972; McDonald, 1999), and (3) interpreting
the construct as a causal system in which the observables
influence each other (Cramer et al., 2010).

Recent Developments

The past couple of years, advances in psychometrics have
mainly focused on extensions of the traditional measurement
models to deal with more complex situations. Important
extensions include the incorporation and development of
multilevel and random effects structures in IRT models (Fox
and Glas, 2001), factor models (Rabe-Hesketh et al., 2004),
and latent class models (Lenk and DeSarbo, 2000). In these
models, item parameters – considered fixed effects in the
traditional measurement models – may themselves become
random variables. This enables psychometric analyses of nested
data, which are common in large-scale assessments. These
extended models have been formulated within integrated
frameworks that include the different models as special cases
(Moustaki and Knott, 2000; Skrondal and Rabe-Hesketh,
2004).

Other extensions were motivated by the increasing popu-
larity of computerized test administration. This causes response
times to become available to the researcher in addition to the
ordinary responses. Various suitable models have been
proposed including models in which response times are
modeled as collateral information (Van der Linden, 2007,
2009; Van Breukelen, 2005) or as manifestation of the
underlying decision process (Tuerlinckx and De Boeck, 2005;
Van der Maas et al., 2011).

Furthermore, recent advances in computer technology
enabled more refined estimation techniques and model fit
assessment, particularly for multidimensional IRT models
(Béguin and Glas, 2001; Reckase, 2009), factor analyses of
non-normal and categorical data (Satorra and Bentler, 2001;
Molenaar et al., 2012), cognitive diagnosis models (Junker
and Sijtsma, 2001; De la Torre and Douglas, 2004),
unfolding analyses (Busing et al., 2005), and nonlinear
factor models (Klein and Moosbrugger, 2000; Lee and Zhu,
2002).

On the conceptual side, three discussions have dominated
the psychometric literature of the past decade. One concerns
the status of psychometric measurement models and the rela-
tion between psychometrics and psychology (Michell, 1999;
Borsboom, 2006). A second important discussion concerns
the usefulness of Cronbach’s alpha as a measure of reliability,
which has been forcefully contested (Zinbarg et al., 2005;
Sijtsma, 2009). Third, the proper definition of validity
remains a contentious topic that continues to generate debate
(Lissitz, 2009; Newton, 2012).

With respect to psychometric software, recent developments
have mainly been inspired by the rise of the open source
statistical software program R (R Development Core Team,
2012). This program enables psychometricians to develop
their own model estimation packages and share these with
other researchers. This trend is illustrated by two recent

special issues of the Journal of Statistical Software (2007, 2012)
that focused exclusively on psychometrics in R. Among the
most popular R packages for psychometric analyses are ltm
(Rizopoulos, 2006) and eRm (Mair and Hatzinger, 2007),
which can fit various IRT models to data; mokken (Van der
Ark, 2012), which may be used to fit nonparameteric IRT
models to data; sem (Fox, 2006) and lavaan (Rosseel,
2012), which enables structural equation modeling; smacof
which involves MDS (De Leeuw and Mair, 2009); and
qgraph (Epskamp et al., 2012), which produces network
visualizations of psychometric data and models. In addition,
the OpenMx package (Boker et al., 2010) is a more general R
package that can be used to fit various (extensions of)
parametric models, including advanced possibilities like
mixtures and joint modeling of discrete and continuous data.

See also: Classical (Psychometric) Test Theory; Reliability:
Measurement; Selection Bias, Statistics of.
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