COMMENTARY

When Does Measurement Invariance Matter?

Denny Borsboom, PhD

he question whether observed differences in psychometric test scores can be attributed

to differences in the properties that such tests measure is relevant in many research
domains; examples include the proper interpretation of differences in intelligence test
scores across different generations of people,’ gender differences in affectivity,> and
crosscultural differences in personality.® This question also has generated some of the
most conspicuous controversies in the social and life sciences, where the highest
temperature in the many heated discussions around the topic has, without a doubt, been
reached in the debate on IQ-score differences between ethnic groups in the United
States.*”> Such debates are often unproductive because of a lack of unambiguous
characterizations of concepts like “biased,” “incomparable,” and “culture-fair.” Terms are
easily coined, as is illustrated by Johnson’s® count of no less than 55 types of measurement
equivalence; however, it is often less easy to spell out their meaning in terms of their
empirical consequences. However, without at least some degree of precision in one’s
conception of a term like “equivalence,” it is difficult to have a scientifically productive
debate, or even to agree on what aspects of empirical data are relevant for answering the
questions involved.

It is for this reason that the establishment of concepts like measurement invariance
and bias in an unambigous, formal framework with testable consequences’ ° represents a
theoretical development of great importance. Through this work, it has become clear that
differences in raw scores (eg, [Q-scores) of different groups (eg, blacks and whites) cannot
be used to infer group differences in theoretical attributes (eg, general intelligence) unless
the test scores accord with a particular set of model invariance restrictions. Namely, the
same attribute must relate to the same set of observations in the same way in each group.
Statistically, this means that the mathematical function that relates latent variables to the
observations must be the same in each of the groups involved in the comparison.”® This
idea has become known as the requirement of measurement invariance.

The theoretical definitions of measurement invariance and bias are very general, and
apply to different models, such as item response theory (IRT) and factor models, in
roughly the same way.'®!'" This does not hold for the empirical methods available for
testing measurement invariance. In the past decades, psychometricians working on
measurement invariance have produced many different statistical techniques to assess
differential item functioning (DIF). These techniques usually employ different statistical
assumptions, for instance, regarding the form of the relation between latent and observed
variables and the shape of the population distribution on the latent variable, and employ
different modeling strategies as well as selection criteria for flagging items as biased. For
this reason, it is difficult to assess the consequences of choosing a particular technique;
moreover, it is not always clear to what extent the choice of technique makes a difference
with respect to the diagnosis of meaurement invariance and bias in applied situations.

For this reason, the articles on DIF collected here (by Crane et al;'? Dorans and
Kulick;'? Jones;'* Morales, Flowers, Gutierrez, Kleinman, and Teresi;'> Edelen Orlando
et al'®) represent a useful project in the application of bias detection methods. Each set of
authors analyzes the Mini-Mental State Examination (MMSE) for measurement invari-
ance using the same data, albeit with different methods. Together, the articles provide a

From the Department of Psychology, Faculty of Social and Behavioral Sciences, University of Amsterdam, Amsterdam, The Netherlands.

Reprints: Denny Borsboom, Department of Psychology, Faculty of Social and Behavioral Sciences, University of Amsterdam, Roetersstraat 15, 1018 WB
Amsterdam. E-mail: d.borsboom@uva.nl.

Copyright © 2006 by Lippincott Williams & Wilkins

ISSN: 0025-7079/06/4400-0176

S176 © 2006 Lippincott Williams & Wilkins

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



Medical Care ® Volume 44, Number 11 Suppl 3, November 2006

When Does Measurement Invariance Matter?

sort of natural experiment on the robustness of biasing effects
with respect to the choice of method. To what extent do these
DIF detection methodologies converge in their conclusions
regarding measurement invariance?

A CUP HALF FULL

Depending on one’s perspective, the bias detection cup
could be considered half full or half empty: The authors agree
in their diagnosis on roughly half of the items (9 of 21). Items
1 (What is the year?), 4 (What day of the week is this?), 5
(What month of the year is this?), 12 (Serial 7s), and 21
(Copy design) are uniformly identified as being “pure” items,
that is, as items not showing evidence of bias with respect to
language in any direction. These items were used by Edelen
Orlando et al'® to establish a set of “anchor” items, which
provided a matching criterion or benchmark for assessing the
functioning of the other items. Thus, it does seem that their
construction of an anchor set was successful, although it is
somewhat surprising that Jones'* diagnosed an additional
anchor item (item 9) with bias.

The articles uniformly detect item bias in items 2 (What
is the season?), 6 (What state are we in?), 7 (What city are we
in?), and 17 (Repeating a phrase read by the interviewer). The
first 3 of these items are easier for English-speaking patients,
whereas the last is easier for Spanish-speaking patients.
Finally, despite the presence of biasing effects at the item
level, the total test score is virtually unbiased. Apparently,
bias in both directions (ie, favoring English and Spanish
speakers, respectively) averages out across items, leaving a
net weight of 0 at the level of the total score. Thus, the
MMSE provides a good illustration of bias cancellation. It is
not clear how often bias cancellation occurs and, hence, it is
interesting to see such a near-perfect instantiation of the
phenomenon in a real research situation.

With respect to the remaining 12 items, the authors do
not agree uniformly, likely because of variation in the em-
ployed criteria for DIF. These are indeed varied: Jones'* uses
improvement in model fit when biasing effects are added to
the model in a stepwise fashion; Morales et al'> use cut-off
scores on NCDIF measures; Crane et al'> use a Bonferroni
correction in the detection of nonuniform DIF, but then
switch to an effect size measure for the detection of uniform
DIF; Dorans and Kulick'® use ST-PDIF values; and Edelen
Orlando et al'® use conventional significance tests at alpha =
0.05 for the construction of an anchor test, but turn to a
Benjamini-Hochberg correction when detecting DIF.

WILL THE TRUE CRITERION FOR DIF PLEASE
STAND UP?

The fact that different criteria for DIF lead to different
conclusions as to which items are biased is not suprising.
However, it does raise a problem, because the choice of
criterion will affect which items are flagged for DIF. So,
which criterion should be used? Could there be such a thing
as a “right” criterion?

It is doubtful whether there could be such a criterion,
and the reason for this lies in a structural problem with the
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construction of concrete empirical criteria for the presence of
DIF. This problem originates from the imposition of a cate-
gorical classification scheme (DIF/no-DIF) on what is essen-
tially a matter of degree. DIF, usually viewed as the differ-
ence between parameters that govern the item response
function in different groups, is defined on the continuum: It
can theoretically assume every value of the real line. Mea-
surement invariance, in contrast, occurs in only one situation,
namely when the difference in question equals 0. All other
values for the difference between parameters that govern the
item response function, according to formal definitions, imply
bias. This is because bias is defined simply as the negation of
measurement invariance.”® Thus, DIF is a matter of degree,
but measurement invariance is not, because the former varies
on the entire continuum, while the latter is defined as an ideal
situation that corresponds to just one value of the difference
between parameters, namely zero.”® This type of hypothesis
is called a point hypothesis. One can sense intuitively that the
chances of encountering a true point hypothesis are slim, by
considering that such a hypothesis says that 2 parameters
differ by exactly 0.000 . . ., with an infinite number of zeroes
behind the delimiter.

Statistical tests for detecting bias usually conceptualize
the ‘no-DIF’ hypothesis as a null hypothesis, which is to be
rejected if the P value associated with the data is below some
chosen level of significance. However, like all point hypoth-
eses, the “no-DIF” hypothesis usually will be false. It follows
that with sufficiently large sample sizes, all items in all
tests will probably be identified as biased with respect to
all conceivable subpopulations. With more moderate sam-
ple sizes, the distinction between items with and without
DIF is induced by a critical area of rejection, which is in
turn a direct function of sample size and chosen signifi-
cance level, both of which are arbitrary from a bias
detection perspective.

If an effect size measure is used instead of a signifi-
cance level, the question arises what amount of bias should be
considered problematic. This matter is difficult to resolve,
because even substantial levels of bias (in terms of effect
sizes) at the item level need not interfere with research
purposes. One example, nicely illustrated in the present
articles, occurs when biasing effects cancel out. In that case,
total test scores can sensibly be used for the comparison of
populations, even though they are made up of items that are
individually biased. Moreover, blind removal of the items
with the most severe level of bias (for instance, the 4 items on
which the present studies unanimously agree) may actually
induce more, rather than less, bias at the test score level. This
is because removing such items can disturb the equilibrium of
biasing effects needed for cancellation to occur. In addition,
blindly removing items may adversely affect content validity.

Evidently, whether bias is to be considered an impor-
tant validity threat is not a straightforward function of p-
values or effect sizes. The reason for this is that the impor-
tance of bias is partly a pragmatic issue: It depends on aspects
of the research situation that are not statistical in nature, such
as the purposes for which the test scores are being used.
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THE PRAGMATIC DIMENSION OF BIAS
DETECTION

Shifting the question from “is test X biased?” to “does
the amount of bias in test X matter?” changes the nature of
inquiry. Although the first question can be viewed as an
empirical one, the second cannot be so construed. Whether
bias matters depends not just on the amount of bias, but also
on the purposes of the researcher and on the source of the
biasing effect. For instance, in medical diagnosis, where test
scores may affect individuals’ lives directly, bias can be
expected to generally be more pertinent than in research
where one is merely interested in establishing the direction of
a correlation between 2 constructs in different populations.
Different combinations of the purposes of the researcher and
the source of the biasing effect therefore suggest different
courses of action with respect to the items in question. To
clarify this problem situation, the relative importance of DIF
is discussed in terms of different purposes for which test
scores can be used. Three possible uses of the test scores are
considered: comparing group means, investigating the rela-
tions between variables within groups, and the selection of
individuals.

Comparing Means Between Groups

If the goal of the researcher is to compare group means
on the basis of observed test scores, bias can be a serious
problem. Unless biasing effects cancel, mean group differ-
ences in observed scores need not reflect differences in the
latent variables of interest because the observed scores are
confounded. Here, the size of the biasing effects is crucial.
Now, it is not possible to say anything sensible about what
amount of bias should, in general, be deemed “too much,”
without relating it to other factors in the research situation.
This is because the importance of the biasing effects can only
be assessed by considering their size in relation to the size of
targeted effects, where the term “targeted effects” indicates
the effects one is interested in from a substantive viewpoint.
Suppose that the test scores are biased, but the amount of bias
is an order of magnitude smaller than the targeted effects. In
that case, there is no real risk of confounding, however large
the size of the biasing effect is in absolute terms. For if the
targeted effect obtains, then it will swap biasing effects in any
direction; if it does not obtain, then the biasing effect will not
be large enough to lead the researcher to the erroneous
conclusion that the targeted effect exists. Similarly, small
biasing effects may be negligible in describing relationships
qualitatively, ie, in terms of their direction. Although there is
no clear rule about how small the biasing effect should be in
relation to the targeted effect for it to be negligible, this can
be reasonably investigated by studying the robustness of
effects under various levels of measurement bias.

Thus, it is not possible to identify a given amount of
bias as problematic in all situations and circumstances. For
however large the biasing effect may be, if the theoretically
predicted effect is an order of magnitude larger, bias will not
be a problem. Of course, one can only properly assess
whether this is the case if one has a substantive theory that is
sufficiently detailed to make predictions on effect sizes. If the
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theory is not capable of making predictions more specific
than ‘the effect will be different from zero’, then even the
smallest amount of bias can lead the researcher to the wrong
conclusion. Therefore, if theories are incapable of making
predictions in terms of effect sizes, which is the rule rather
than the exception in the social and life sciences, measure-
ment invariance is always an issue. This does not mean that
full measurement invariance is invariably necessary; for par-
tial invariance, as discussed by Gregorich'” and Meredith,'’
allows for latent mean comparisons to be made without full
measurement invariance. Rather, it means that insight into the
presence and strength of biasing effects is a prerequisite for
sensible group comparisons to be made, and therefore a
serious modeling exercise is called for. Thus, it is safe to say
that, at least in the social and life sciences, research on
measurement invariance (rather than measurement invariance
itself) must be seen as a prerequisite for any inference from
observed mean differences to latent mean differences to be
made. It is evident that many researchers who engage in
comparisons of groups do not currently follow this recom-
mendation; often, measurement invariance is tacitly assumed
rather than investigated. Hopefully, the currently available
methodology for investigating measurement invariance will
change this situation, so that checking for measurement
invariance will become part of the standard analyses in
studies on group differences.

Comparing Within-Group Relations

If one’s research interest is not to compare means between
groups, but rather to investigate how variables are related within
different groups, then bias may be entirely irrelevant. For in-
stance, suppose one is interested in the causal effect of alcohol
intake on cognitive functioning, and that one examines this
effect in separate groups, say, in Spanish and English speakers.
Further suppose one uses test scores known to be biased against
English speakers, with the size of the biasing effect being in the
same order of magnitude as the expected effect of alcohol intake.
In that situation, the presence of a biasing effect precludes a
sensible comparison of the means of English and Spanish
speakers. However, this does not imply that one cannot use the
test scores to investigate whether alcohol intake influences
cognitive functioning in each of the groups separately; clearly,
this remains possible.

Hence, if the sole purpose is to determine the ordering
of persons, made within each of the groups separately (eg,
level of cognitive functioning), and to relate this ordering to
another ordering, made within each of the groups separately
(eg, level of alcohol intake), the presence of DIF need not
constitute a validity threat. Whether it actually is a validity
threat partly depends on the source of the biasing effects. In
particular, if bias is caused by multidimensionality, then it is
likely to be a problem not only for mean comparisons across
groups but also in relating variables within a group. If bias
originates from different sources, like translation or differen-
tial interpretation of items, it need not be a validity threat.

To illustrate this, first consider a situation where items
do not show DIF because they are multidimensional, but
because they effectively constitute different items in different
populations (see Borsboomet al'®). In the MMSE, this situa-
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tion occurs with some items because they have been literally
translated: Although literally translated items may measure
the same attribute in each group, they can have very different
psychometric properties. A good example is the item that
asks the patient to repeat the phrase “no ifs, ands, or buts”.
The translation of this item is literally the same, but psycho-
metrically the translated item is so different that it almost
instantiates a different item altogether. Consequently, it is no
wonder that bias is found: I do not speak Spanish at all, but
I am sure I could repeat “no hay peros que valgan” with less
trouble than the English original, even if I had no clue what
the words mean.

In this case, the source of the biasing effect is not
multidimensionality; the item in question may be a measure
of the same latent variable in each group, and it may be
unidimensional within each group (ie, depend only on the
latent variable of interest). This may be so, even though group
differences on observed means cannot be attributed to mean
differences on the latent variable. These differences originate
because the item, although literally equivalent, effectively
functions as a different item in both groups. If one is merely
interested in ordering people in each group separately, then
such items are likely to enhance rather than lower the preci-
sion with which this is done. In that case, there is no need to
discard such items.

It is perhaps useful to shortly elaborate on this obser-
vation, because some researchers are of the opinion that that
bias is synonymous with multidimensionality. Obviously, this
is not the point of view to which I subscribe. In my view, the
model presented by Shealy and Stout'? correctly captures the
relation between bias and multidimensionality. In their view,
multidimensionality is not synonymous with bias, but a
possible explanation for it. Now, if the bias is caused by
multidimensionality, then groups must differ in their popula-
tion distribution on the additional dimension measured by the
test; otherwise this dimension cannot differentially affect the
item responses. This means that the additional dimension
must be distinct from, but associated with, group member-
ship. There is no reason to suppose such a situation to obtain
in the example of the translated item (see Borsboom et al'®
for other examples).

However, if the source of the biasing effect is that item
responses do depend on a second latent attribute, not targeted
by the researcher, that the groups possess in uneven amounts
(ie, DIF is due to multidimensionality'®), then the situation is
different. For instance, consider the item *What state are we
in?’ and its Spanish equivalent. The biasing effect on this
item does not seem to be induced by the fact that the item is
translated. It is more likely to depend on other attributes that
the groups possess in uneven degrees, such as level of
education. Now, if this occurs, then the test scores depend on
more than the latent variable of interest. In that case, the test
scores are likely to violate unidimensionality in each of the
groups separately as well as in a multigroup analysis. And
that means that we are also inducing bias in the ordering of
people within groups. Suppose that the test measures level of
education in addition to cognitive functioning, in the sense
that, when the level of cognitive functioning is controlled for,
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an effect of education remains. Since level of education
varies within groups as well as between them, lower educated
Spanish people will receive lower scores than higher edu-
cated Spanish people, even if they have the same level of
cognitive functioning. This means that any within-group
relation found to exist between the total scores on the MMSE
and another variable may be confounded, because it may
actually reflect a relation that involves level of education
rather than cognitive functioning.

Thus, it is possible to use raw scores on items, that are
biased in a between-group sense, to investigate relations be-
tween variables within groups, but the conditions under which
this can be done safely are limited. In particular, it is feasible
only if the biasing effect is not caused by factors that are likely
to confound within-group orderings of persons as well as be-
tween-group mean differences. One way to investigate whether
this is the case is to fit unidimensional models in each of the
groups separately, in addition to doing a multigroup analysis. If
an item turns out to be biased in the multigroup model, but
undimensionality is satisfied in each of the groups separately,
then the item need not be discarded if tests are only used for
ordering people within each of the groups separately, and not for
the comparison of group means.

However, it must be noted that the quantitative com-
parison of the magnitude of effects across groups will usually
be problematic in the presence of all kinds of biasing effects.
A well known and relatively simple problem of this kind
occurs, for instance, when tests have differential reliability
across groups. In this case, the effects of interventions on the
observed scores will usually be different, because regression
coefficients will be attenuated to a larger degree in the group
where reliability is lower. This may thus lead to spurious
interactions. Hence one must be very careful in quantitatively
comparing the magnitude of effects across groups.

Selection

The discussion has so far concentrated on research pur-
poses that often serve a primarily scientific interest, or, in
Meredith’s'! terms, are in the area of “basic” research. However,
test scores on the MMSE are not just used for scientific pur-
poses; they are also used to make decisions about individuals.

It has since long been acknowledged that, when tests
are to be used in the selection of individuals rather than for
scientific research on population characteristics (eg, means
and correlations), they should conform to higher psychomet-
ric standards because of the danger of bias. These standards
were originally set in terms of equal reliabilities and val-
idity coefficients in different groups.?® Since the development
of the theory on measurement invariance, however, the stakes
have been raised considerably. Meredith® defines fairness (in
terms of equal conditional distributions of the predictors,
given the true criterion score, across groups) and equity (as
equal conditional distributions of the criterion, given the true
predictor scores, across groups). These definitions seem rea-
sonable. Meredith™!" has shown that, unless measurement
invariance holds, fairness and equity cannot exist in principle.
Thus, when the purpose of test use is the selection of
individuals, measurement invariance is a necessary condition
for fair selection procedures.
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There seems to be little room for negotiation on the
importance of measurement invariance in a selection context.
Conditions that may lead a researcher to conclude that vio-
lations of measurement invariance do not pose a serious
validity threat, given the research purposes, are not usually
applicable to the situation where one is selecting individuals.
A good example is bias cancellation. Biasing effects may
cancel, but if they do, they cancel at the level of (conditional)
population distributions, rather than at the level of the indi-
vidual person. So, while it may be true that, if bias cancel-
lation occurs, conclusions regarding group differences in
means can remain valid even though some items are biased,
this will not satisfy the individual patient who has been
misdiagnosed because he or she happened to belong to a
particular ethnic group.

The conditions to be met for fairness and equity to
exist, as discussed by Meredith,'! are in fact somewhat
stricter than measurement invariance alone because measure-
ment invariance is a necessary but not a sufficient condition
for fairness and equity. Meredith’s™'" work thus indicates
that very careful psychometric analyses are crucial for devel-
oping fair and equitable selection procedures. Naturally, the
point remains that measurement invariance will usually be
violated to some degree—however small—so that every
selection procedure will be also unfair to some degree (see
also Millsap and Kwok?'). Further, the requirements dis-
cussed by Meredith'! are so strict that one might expect truly
fair and equitable selection procedures to be rare, if they exist
at all. However, this does not alter the point that, when the
purpose of test use is selection, the minimization of bias must
be considered a primary goal in developing and evaluating
selection procedures. Millsap and Kwok*' give an accessible
treatment of the question to what extent violations of mea-
surement invariance lead to bias in selection, that can be used
by applied researchers to evaluate the severity of such viola-
tions for selection biases.

Of course, given that some degree of bias is likely to be
present in any real selection situation, the question arises how
high a degree of bias is still acceptable. This question is, in
my view, very difficult to answer in general terms. Fortu-
nately, however, such an answer may not always be neces-
sary. Because selection often is unavoidable, abandoning one
selection instrument commonly implies using another, so that
the proper strategy is unambiguous: One should use the
instrument that shows the least amount of bias. Needless to
say, one cannot make an informed choice in this regard if one
has no information on the degree to which different instru-
ments are biased, which once more underscores the fact that
investigating measurement invariance should be routinely
done in every situation where fair selection is at stake.

DISCUSSION

Although the present collection of articles on DIF
detection'*'® shows considerable agreement on the size and
direction of biasing effects in the MMSE, some disagreement
is also evident. This disagreement is likely to be due to the
use of different empirical criteria for the diagnosis of DIF.
Instead of searching for the ‘right’ criterion, the present
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commentary has attempted to go beyond the question whether
items have DIF, by evaluating when and how DIF matters in
different situations. When comparing means, biasing effects
may be negligible if they are small, and in this case violations
of measurement invariance need not be a serious validity
threat. However, it is not the absolute size of the biasing
effects that matters, but their size relative to targeted effects;
hence, in the absence of a theory that says how large the
targeted effects are supposed to be, tests for measurement
invariance are necessary for evaluating differences in group
means. When relations between variables are studied within
different groups separately, bias may be ignorable if the
source of the biasing effect does not confound within-group
orderings. This, for instance, may occur when the biasing
effect is due to a source that varies between groups, but not
within groups. Such a situation may arise quite naturally if
items are translated literally. However, if the biasing factors
have effects both within and between groups, relations found
within groups may be as confounded as mean differences
between groups, so that bias again becomes a validity threat.
Finally, if tests are used for selecting individuals, then the
minimization of bias should always be a primary goal in
developing selection procedures.

Where does all this leave us with regard to the impli-
cations for everyday research? It appears that measurement
invariance is rarely explicitly investigated. Many researchers
simply assume their measures to be invariant across groups,
without checking this assumption. In combination with the
fact that most instances of applied research focus on the
rejection of point hypotheses with regard to observed scores
(ie, “population means of test score X are equal” or “the
regression of test score X on Y is the same across groups”),
this is potentially problematic, because in this case even
subtle violations of measurement invariance may lead to
spurious conclusions. However, it is unclear how often such
erroneous conclusions are drawn because measurement in-
variance is not routinely investigated. Obviously, this is
undesirable. Fortunately, in view of the presently available
methodological techniques, this situation need not persist.
Hence, investigating measurement invariance should now
become a routine part of research into the structure of group
differences. Hopefully, the present volume will contribute to
the swift incorporation of bias detection techniques into the
standard methodological toolbox of the scientific researcher.
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