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In this article, a distinction is made between
absolute and relative measurement. Absolute mea-
surement refers to the measurement of traits on
a group-invariant scale, and relative measurement
refers to the within-group measurement of traits,
where the scale of measurement is expressed in
terms of the within-group position on a trait. Relative
measurement occurs, for example, if an item induces
a within-group comparison in respondents. These
distinctions are discussed within the framework of
measurement invariance, differentiating between
absolute and relative forms of measurement invari-
ance and bias. It is shown that items for relative
measurement will produce bias as classically defined

if the mean and/or variance of the trait distribution
differ between groups. This form of bias, however,
does not result from multidimensionality but from
the fact that measurement is on a relative scale. A
logistic regression procedure for the detection of
relative measurement invariance and bias is proposed,
as well as a model that allows for the incorporation
of items for relative measurement in test analysis.
Implications of the distinction between absolute and
relative measurement are discussed and prove to be
especially relevant for the domain of personality re-
search. Index terms: construct validity, differential
item functioning, item bias, measurement invariance.

Questions concerning test validity are central to test theory and scientific progress, but also
to ethical, legal, and political issues related to test use (Cronbach, 1988; Messick, 1989). Within
validity theory, the development of concepts such as measurement invariance and item bias has
provided an important conceptual framework for thinking about these issues. However, the relation
between construct validity and measurement invariance is not yet entirely clear. This article purports
to provide some insight into this relation by presenting a distinction between different kinds of
measurement invariance and bias and by evaluating these within a construct validity perspective.
Especially, the authors are concerned with the meaning of measurement invariance and bias in the
domains of personality and attitude testing.

The ideas of item bias and measurement invariance were first conceived of in item response
theory (IRT) by Lord (1980), who proposed that measurement invariance with respect to group
membership holds if an item follows the same item characteristic curve (ICC) in all groups. In IRT
for dichotomous item responses, this requirement means that the probability of a given response
is the same for members of different groups with the same position on the trait measured by the
test (Mellenbergh, 1989; Millsap & Everson, 1993). The notion of measurement invariance can
be generalized to cover a wider range of models by making the more general requirement that the
distribution function of the item response be invariant across groups, conditional on the latent trait
(Meredith, 1993). Thus, an item j , answered by Participant i and assumed to measure latent trait
T , is measurement invariant with respect to selection on variable V if and only if the following
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equation holds for the distribution function F of the item response Xij :

F
(
Xij = xij |T = ti , V = vi

) = F
(
Xij = xij |T = ti

)
(1)

for all {x, t, v}.
This definition corresponds to unobserved conditional invariance (UCI) as discussed by Millsap

and Everson (1993). Whenever the above condition is violated, the item is said to be biased. In the
IRT literature, the more neutral term differential item functioning (DIF) is often preferred. In this
article, the terms are used interchangeably. Thus, item bias occurs if and only if

F
(
Xij = xij |T = ti , V = vi

) �= F
(
Xij = xij |T = ti

)
(2)

for some {x, t, v}.
As can be seen from Formula 2, item bias amounts to an influence of group membership on the

item response in subpopulations with the same position on the trait. Item bias may, for example,
occur in an IQ-test if men score better on an item than women, although there is no difference in
intelligence. Item bias is to be sharply distinguished from impact, which amounts to differences in
test scores that are due to differences in trait distributions (Millsap & Everson, 1993). For the above
example, impact would occur if the better scoring of men was due to higher mean intelligence. In
this case, the differential performance can be entirely attributed to a difference in location of the
latent trait distributions.

Item bias bears directly on construct validity. When the intention is to measure a unidimensional
concept, one would intuitively expect that a biased item is necessarily invalid. Indeed, item bias has
been equated with multidimensionality (Kok, 1988). Shealy and Stout (1993, p. 198) remarked that
“test bias occurs if the test under consideration is measuring a quantity in addition to the one the
test was designed to measure, a quantity that both groups do not possess equally.” On the item level,
item bias is seen as the effect of an unwanted, additional variable on the item response. In this view,
bias with respect to group membership is produced by an association of this additional variable
with group membership, thus influencing item responses differently in each group. Consequently,
if the intention is to measure a single trait, removing items that are biased with respect to group
membership from the test seems a plausible strategy to enhance construct validity. One of the
objectives of this study, however, is to show that this is not always the case.

The conceptual framework of measurement invariance has been developed from the perspective
of cognitive testing, and this is the primary field where DIF-analyses are used. One reason for this
is that the concepts of measurement invariance and bias are most salient in individual decisions that
are “high-stake,” for example, when tests are used for college admissions or personnel selection—
domains where cognitive tests are of primary importance. For scientific purposes, however, the
importance of questions concerning measurement invariance and bias is not restricted to any specific
theoretical domain. Indeed, there have been some recent applications in personality testing (Ellis,
Becker, & Kimmel, 1993; Huang, Church, & Katigbak, 1997; Smith & Reise, 1998), and the
screening for DIF is equally important in the field of personality psychology as in any other domain
of psychological measurement.

Now, the technical aspects of measurement invariance and bias can be applied to domains other
than cognitive testing without any specific problems, because they are of a mathematical nature and
thus entirely syntactical. However, the meaning of measurement invariance and bias may change
with the field of application. The authors will be concerned with one specific shift of meaning that
occurs when the concepts of measurement invariance and bias are used in the area of personality
and attitude testing. Especially, the meaning of measurement invariance when items invoke a frame
of reference, for example, by inducing a within-group comparison, will be looked at. It will be
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argued that such items will display bias as defined above. However, from a construct validity
perspective, such items are not necessarily invalid, but rather there is a misfit between the model
that is used and the cognitive processes that are involved in the item response. To deal with this
problem, the framework of measurement is extended. A distinction between relative and absolute
forms of measurement is introduced, and corresponding forms of measurement invariance and bias
are defined. It is shown that items that induce a within-group comparison will lead to absolute,
but not to relative, bias. Following this distinction, it will be argued that items showing absolute,
but no relative, bias do not necessarily have to be eliminated from a test. Upon proper analysis,
these items—although biased according to current standards—can enhance test validity and do not
necessarily produce test bias.

Absolute and Relative Forms of Bias

Consider the following thought experiment. Imagine a world where the development of mea-
surement theory in the social sciences has preceded measurement in the natural sciences. In this
world, psychological research on attitudes and self-efficacy is common practice, whereas concepts
such as height or weight are still to be invented. A psychologist might then conceive of a person’s
height as a useful construct for the explanation of certain types of behavior, such as the predis-
position of some individuals to participate in basketball and the difficulty others experience when
reaching for the upper shelves of a closet. However, because a measurement apparatus for the as-
sessment of height has not yet been invented, he or she can only use social science’s measurement
methods to assess height. For this reason, the psychologist would probably go about constructing
a questionnaire consisting of items such as “I have trouble getting a book from the upper shelves
in a library,” “Sometimes I have to bend over in order to see my face in a mirror,” and “When
sitting on somebody else’s chair, I cannot usually reach the ground with my feet.” Suppose the
psychologist would have constructed a questionnaire consisting of the aforementioned three items,
and would add a fourth on the basis of his or her intuitions concerning the relation between height
and basketball: “I would do well on a basketball team.”

Although this item has high face validity, a formal test of DIF points out that the item shows DIF
with respect to sex; women have a higher probability of answering yes than do men of the same
height. Formally, if one calls the item response Xij (scored dichotomously with yes = 1 and no =
0), takes height to represent the latent trait T , lets V denote sex (say, V = 0 for men and V = 1 for
women), and P the probability of an item response, then

P
(
Xij = 1|T = ti , V = 0

)
< P

(
Xij = 1|T = ti , V = 1

)
, (3)

for at least some values of T , so the item has DIF. To increase test validity, the psychologist removes
the item from the test. But is this a sensible thing to do? The authors think it is not, and this has
to do with the nature of the sex difference. A woman, 5.8 feet tall, may imagine a basketball team
consisting of women and conclude that she would do well because she is relatively tall—considering
her sex. A man of the same height may correctly judge himself to be relatively short—considering
his sex—and conclude the opposite. Because of the within-group comparison made by both sexes,
the item has absolute bias: men and women of the same height do not have the same probability
of an affirmative answer. However, men and women with the same relative height within their own
group (for example, a standard deviation above the group mean) do have identical probabilities of
an affirmative answer. Thus, although the item is biased with respect to absolute height, it is not
biased with respect to relative height.
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This notion is now formalized. Denote the relative position on the trait by W , taking on values
wi . Then, for the item under consideration, although it is true that

P
(
Xij = 1|T = ti , V = 0

)
< P

(
Xij = 1|T = ti , V = 1

)
(4)

for some {t}, it is also true that

P
(
Xij = 1|W = wi, V = 0

) = P
(
Xij = 1|W = wi, V = 1

)
(5)

for all {w}. Following this insight, two forms of measurement can be distinguished. Absolute mea-
surement refers to a procedure to measure the trait on an absolute scale (e.g., “I have trouble getting
a book from the upper shelves in a library”), and relative measurement refers to a procedure to
measure the trait on a relative scale (e.g., “I would do well on a basketball team”), where the mea-
surement unit is expressed in terms of the relative position within the group to which the participant
belongs. The different forms of measurement imply different definitions of measurement invariance
and bias. Accordingly, absolute and relative measurement invariance and their corresponding forms
of bias are differentiated as follows:

Definition 1. For an item, generating item response Xij and measuring trait T , absolute mea-
surement invariance with respect to selection on variable V occurs if and only if

F
(
Xij = xij |T = ti , V = vi

) = F
(
Xij = xij |T = ti

)
(6)

for all {x, t, v}. Absolute bias with respect to selection on variable V occurs if and only if

F
(
Xij = xij |T = ti , V = vi

) �= F
(
Xij = xij |T = ti

)
(7)

for some {x, t, v}. Note that these are the usual definitions of measurement invariance and bias
(Mellenbergh, 1989; Millsap & Everson, 1993).

Definition 2. For an item, generating item response Xij and measuring trait T , relative measure-
ment invariance with respect to selection on variable V occurs if and only if, for the item response
conditional on W (the relative within-group position on the trait T ),

F
(
Xij = xij |W = wi, V = vi

) = F
(
Xij = xij |W = wi

)
(8)

holds for all {x,w, v}. Relative bias with respect to selection on variable V occurs if and only if

F
(
Xij = xij |W = wi, V = vi

) �= F
(
Xij = xij |W = wi

)
(9)

for some {x,w, v}.
Now the problem occurs how to specifyW . This depends primarily on the nature of the cognitive

processes involved in answering personality items, which at present is unknown for most tests.
However, it is obvious that W should be some transformation of the trait T . The form of this
transformation might be different for different tests and items, and it could, in principle, even vary
over groups. So, in the general definitions, the exact form of the transformation should not play a role.
However, to apply the concepts of relative measurement and bias, some form for the transformation
has to be assumed. W will be conceived of as the within-group standardized transformation of
T . There are three reasons for this. First, this assumption leads to precise and testable hypotheses.
Second, theZ-transformation has many desirable mathematical properties that will become apparent
in the next section. Third, even if the actual comparison is not made on a standardized within-group
scale (for example, if it is in terms of absolute deviations from the mode), the Z-score will often
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provide a reasonable approximation. In the remainder of this article, therefore, W will be equated
with the within-group standardized transformation of T , which will be denoted as Z, taking on
possible values zi . Note that the first two moments of the distribution of Z are—by definition—the
same across groups: It has mean 0 and variance 1 within each of the groups. Furthermore, if the
original trait distributions are normal, the resulting Z-distribution is the same in each group. This
observation has implications for the theory of multidimensionality, which are discussed below.

By equatingW with the within-group standardized transformation of T , Definitions 8 and 9 are
altered by substitutingZ and zi forW andwi , respectively, and the resulting concepts may be coined
“standardized relative measurement invariance and bias.” To avoid an overload of terminology,
however, in text the authors will continue to speak of relative measurement invariance and bias,
with the understanding that an assumption concerning the form of the transformation has been
made; consequently, Z instead ofW will be used in the formulae. Finally, the authors would like to
stress that different forms of the transformation could be used and that the appropriateness of the
chosen form of the transformation represents a testable hypothesis. Thus, although the exact form
of the transformation does not play a role in the general definitions given above, it does play a role in
the consequences and assessment of relative measurement invariance and bias. As a consequence,
the results derived hereafter do depend on the appropriateness of the Z-transformation.

The Relation Between Absolute and Relative Bias

In this section, the relation between absolute and relative measurement invariance and bias is
examined. This paragraph is primarily intended to show the mutual incompatibility of absolute and
relative measurement invariance. The terminology of IRT will be used because it allows for a clear
and comprehensible expression of the concepts of measurement invariance and bias. Later in this
article, the authors return to the more general case and also discuss a structural equation modeling
(SEM) approach to modeling relative measurement invariance.

In parametric IRT, the probability of a correct response to an item is expressed as a function of
a person characteristic (the position on the latent trait) and a number of item characteristics (e.g.,
the difficulty of the item and the item’s ability to discriminate between participants with different
trait values). A common form for this relation between the probability of a correct response, the
position on the latent trait, item difficulty, and item discrimination is provided by Birnbaum’s (1968)
two-parameter logistic model:

P(Xij = 1|ti , aj , bj ) = exp
[
aj (ti − bj )

]
1 + exp

[
aj (ti − bj )

] , (10)

where bj indicates the difficulty of item j , aj is its discrimination parameter, and ti denotes Participant
i’s position on the latent trait T . For a single item, model Formula 10 gives the ICC, which results
from plotting the response probabilities for this item against the latent trait values. The parameter
bj determines the location of the ICC and the parameter aj its slope in the point ti = bj , hence their
interpretation as item difficulty and item discrimination. Absolute measurement invariance can be
expressed as the requirement that the ICCs for different groups are identical: If ICCs are identical
across groups, the probability of a correct response, conditional on the latent trait, is the same for
participants with the same latent trait values, regardless of their group membership.

The ICC results from plotting the probability of a correct response against the latent trait, for
which absolute trait values are used. Following the authors’ distinction between absolute and relative
measurement, the “classical” ICC discussed above is referred to as an absolute ICC. However, it
is also possible to plot the probability of a correct response against relative trait values. This gives
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us a relative ICC. The relative ICC relates the probability of a correct response to the within-
group standardized latent trait Z. Like the absolute ICC, its form is determined by two parameters
indicating the relative (within-group) difficulty and slope. These parameters will be denoted as bjrel

and ajrel , and refer to the original absolute parameters as bjabs and ajabs . The form of the two-parameter
variant of the relative ICC is determined by the following formula:

P
(
Xij = 1|zi, ajrel , bjrel

) = exp
[
ajrel(zi − bjrel)

]
1 + exp

[
ajrel(zi − bjrel)

] . (11)

As is the case with absolute measurement invariance, the requirement of relative measurement in-
variance, that the relative ICCs must be equal across groups, can be reformulated as the requirement
that the parameters of the relative ICCs, bjrel and ajrel , are equal across groups.

The question arises how the relative ICC relates to the absolute ICC, or, alternatively, how
the relative item difficulty and discrimination parameters relate to the absolute item difficulty and
discrimination parameters. In particular, it is interesting to inquire under which conditions absolute
and relative measurement invariance may both hold. The relation between absolute and relative
measurement will be discussed at an intuitive level before turning to a more precise formulation of
the relation between absolute and relative parameters.

Consider the item for relative measurement in the height test (“I would do well on a basketball
team”). The left half of Figure 1 shows, in a single graph, the population distributions of the latent
trait and the absolute ICCs for men and women. (The population distributions and the ICCs can be
drawn in a single graph because, in IRT, trait parameters and item difficulty parameters are on the
same scale.) The ICCs for men and women differ in location (i.e., item difficulty), indicating absolute
bias. The right half of Figure 1 shows the relative ICCs, that is, the item response probabilities plotted
against relative trait values. Also shown are the population distributions of the relative trait values.
These are identical because the trait has been standardized within groups (the distribution has mean
0 and variance 1 in each of the groups). Because the locations of the absolute ICCs relative to the
within-group distributions are the same, the relative ICCs are identical for men and women. This
indicates that there is no relative bias; the item has relative measurement invariance.

Figure 1
Absolute and Relative Item Characteristic Curves (ICCs) for an
Item With Relative Measurement Invariance but Absolute Bias

Absolute ICC
for men

Height distribution
for women Height

distribution
for men

Absolute ICC
for women

Relative ICC for
men and women

Relative height distribution
for men and women

' I would do well on a basketball team'

bwomen bmenAbsolute height bmen  = bwomenRelative height

In contrast, Figure 2 shows an item with absolute measurement invariance (“I have trouble
getting a book from the upper shelves in a library,” scored yes = 0 and no = 1). The absolute
ICCs, shown in the left half of the figure, are identical for men and women, indicating absolute
measurement invariance. However, the absolute ICC is located relatively farther away from the
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mean of the trait distribution for men than it is for women; moderately short women have the same
probability of an affirmative response as do extremely short men. As a consequence, the relative
ICCs are different, as is shown in the right half of Figure 2, and the item has relative bias.

Figure 2
Absolute and Relative Item Characteristic Curves (ICCs) for an
Item With Absolute Measurement Invariance but Relative Bias

Relative ICC
for men

Relative ICC
for women

Relative height
distribution for
men and women

'I have trouble getting a book from the upper shelves of a library'

bwomenbmen Relative height

Height
distribution
for men

Height distribution
for women

Absolute ICC
for men and women

Absolute heightbmen = bwomen

Finally, Figure 3 shows an item for which both the absolute and the relative ICCs are different
for men and women, for example, “In bed, I often suffer from cold feet.” This indicates that the
item has both absolute and relative bias.

Figure 3
Absolute and Relative Item Characteristic Curves (ICCs)

for an Item With Both Absolute Bias and Relative Bias

Relative ICC
for men

Relative height
distribution for
men and women

bmen Relative
height

Relative ICC
for women

bwomen

Absolute ICC
for men

Height distribution
for women

Height
distribution
for men

Absolute ICC
for women

bwomen bmen Absolute
height

'In bed, I often suffer from cold feet'

The figures suggest that absolute and relative measurement invariance cannot hold simultane-
ously if the distribution of the latent trait differs across groups. This is due to the fact that the
absolute ICCs cannot be simultaneously located at the same position on the absolute trait (absolute
measurement invariance) and have the same location relative to the group means (relative mea-
surement invariance). The authors now turn to a more precise formulation of the relation between
absolute and relative parameters.

A relative ICC has been defined in model Formula 11. The relative parameters can be expressed
as functions of the absolute parameters, because the relative trait values are linear transformations
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of the absolute trait values; they are defined by the within-group standardization

zi = ti − µTv
σTv

, (12)

where µTv and σTv represent the mean and standard deviation of the trait distribution in group v,
to which Participant i belongs. This standardization is performed separately for each group, which
means that a possibly different linear transformation of the trait values is performed in each group.
The relation between absolute and relative item parameters can be expressed as the effect of these
transformations on the item parameters.

The absolute difficulty parameter bjabs is defined as the latent trait value for which the probability
of a correct response, given the latent trait, is 0.5. In the standardization, all trait values are rescaled
through Formula 12. It follows that the relative difficulty parameter is the relative trait value that is
associated with the absolute trait value ti = bjabs through the linear transformation given in model
Formula 12. So,

bjrel = bjabs − µTv
σTv

. (13)

The relative and absolute difficulty parameters are related through a linear transformation that is
possibly different for each group. Whether the transformation is different depends on differences
in the trait distribution between groups. It follows that, if the mean and/or variance of the trait
distribution differ between groups, absolute and relative measurement invariance in the difficulty
parameters cannot hold simultaneously.

A similar effect holds for the discrimination parameters. It is intuitively plausible that differences
in trait variances have an effect on the slope of the relative ICC. Because the standardization changes
the distances between trait values by a factor 1/σTv , the slopes of the absolute and relative ICCs
can be expected to differ by a factor σTv . Formally, this result is derived as follows. Equations 10
and 11 may be set equal within each group, because the standardization of trait values is a linear
transformation, and consequently the probability of a response for each value of T = t and the
corresponding value ofZ = zmust be the same within each group. Substituting the right-hand sides
of Equations 12 and 13 for zi and bjrel , respectively, and solving for ajrel , the following is obtained:

ajrel = σTvajabs . (14)

From this relation, it follows that, if the variance of the trait distribution differs over groups, either
absolute or relative bias in the discrimination parameter will occur.

Thus, absolute and relative measurement invariance cannot hold simultaneously if groups differ
in means and/or variances of the latent trait. This relation also holds for other than dichotomous
item responses, for example, polytomous or continuous item responses. This statement is not
formally proven, because it is thought rather obvious: Any type of item can only be simultaneously
measurement invariant with respect to T and with respect to Z if the transformation that leads
from T to Z is identical across groups. This transformation can only be identical if the means and
variances of the population distributions on the latent variable are the same. Thus, absolute and
relative measurement invariance can hold simultaneously, but only if there are no differences in the
means and variances of these population distributions. If there are differences in the means and/or
variances of these distributions, absolute measurement invariance will lead to relative bias, and
relative measurement invariance will lead to absolute bias.
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DIF-Detection and Modeling

The question arises how to detect relative DIF in an empirical situation. The formulation of
relative measurement invariance as the requirement that relative ICCs are identical across groups
opens a range of possibilities. It makes IRT-based techniques for the assessment of absolute DIF
available for the detection of relative DIF. Thus, methods based on area measures, such as signed
and unsigned area tests, as well as statistics for the equality of item parameters, or Mantel-Haenszel-
based procedures, could in principle be used to assess relative DIF (see Holland & Wainer, 1993, or
Camilli & Shepard, 1994, for overviews of available techniques for the detection of absolute DIF).

For the dichotomous case, an adaptation of the logistic regression approach (Swaminathan &
Rogers, 1990) for the detection of relative measurement invariance and DIF will be presented,
because it is simple and instructive. The logistic regression approach is based on the idea that, in
a regression of the binary item response on the continuous latent trait, group membership should
not contribute significantly to the prediction once the trait has been included as a predictor in the
regression equation. An item can be tested for DIF by fitting the full regression

P(X = 1) = exp(c0 + c1ti + c2vi + c3tivi)

1 + exp(c0 + c1ti + c2vi + c3tivi)
, (15)

where the c0 to c3 are regression parameters, ti represents the latent trait value of Participant i, and
vi is a dummy variable coding for group membership. In this procedure, one checks whether the
parameters c2 and c3 differ from zero. Here, c2 represents the main effect of group membership
and c3 the interaction between group membership and the latent trait. A significant parameter value
for c3 would indicate nonuniform DIF, which occurs when the amount of DIF changes across trait
values (Mellenbergh, 1982). If the parameter value for c3 is not significant, but the parameter value
for c2 is, this indicates uniform DIF, that is, a constant amount of DIF across trait values. Usually,
the latent trait values are unknown and are replaced by sum scores. If this is done, and the interaction
term is dropped, the logistic regression procedure tests the same hypothesis as the Mantel-Haenszel
procedure (Swaminathan & Rogers, 1990).

Relative measurement invariance can also be tested using logistic regression. Because the con-
cept of relative measurement invariance requires that there be no effect of group membership,
given the relative position on the trait, zi is substituted for ti in the regression (recall that zi is the
within-group standardized value of ti , so that one needs a set of absolute items to estimate ti before
this procedure can be carried out). This gives

P(X = 1) = exp(c0 + c1zi + c2vi + c3zivi)

1 + exp(c0 + c1zi + c2vi + c3zivi)
. (16)

Again one proceeds by checking the significance of the parameters c2 and c3, but now significant
parameter values indicate relative DIF instead of absolute DIF. Analogous to the absolute case,
a significant value for the parameter c3 indicates an interaction between group membership and
the latent trait, corresponding to nonuniform relative DIF. A significant value for the interaction
parameter c3 without a significant value for c2 indicates uniform relative DIF.

If an item shows relative measurement invariance but absolute DIF, the item may be used as
a relative indicator of the trait in question. This requires modeling relative measurement, which
implies that the absolute and relative items be treated differently. For absolute items, item parameters
should be equal across groups as usual. For relative items, however, the (absolute) item parameters
will differ across groups if the trait distributions differ (see the previous section). Now, under relative
measurement invariance, the differences in discrimination and slope are functions of the difference
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in trait distributions. The relations between the absolute parameters in both groups are simple and
can be deduced from Formulae 13 and 14. Setting the right-hand side of Formula 13 equal for two
groups and solving for the absolute difficulty in Group 1 gives

bj1abs = σT1

[
bj2abs − µT2

σT2

]
+ µT1 (17)

for the difficulty parameters, where the second subscript on these parameters indicates group. For
the discrimination parameters, the following is obtained:

aj1abs = σT2

σT1

aj2abs . (18)

Modeling relative item responses can be carried out using these relations. A (slightly ad hoc)
method for doing this would consist of the following three steps. First, estimate the means and
variances of the trait distributions in both groups using only a set of absolute items. This provides
estimates for the means and variances of the trait distribution in the different groups. Second,
estimate the absolute item parameters for the relative items in one group (use the largest group
for better parameter estimation). This provides estimates for the absolute item parameters for the
relative items in one group, so that the difficulty and discrimination parameters for each relative
item can be inserted into the right-hand side of Formulae 17 and 18. Finally, fix the absolute
parameters for the relative items in the second group at the values given by Formulae 17 and 18.
This method is somewhat ad hoc but has the advantage of being simple and easy to implement in
widely available software. Also, this procedure yields the possibility to assess the fit of the entire
model with absolute and relative items, thus testing the fit of the absolute and relative part of the
model simultaneously.

Another option that may be taken, which is especially useful in a SEM approach, is to concep-
tualize the relative within-group dimension as a separate latent variable. SEM programs such as
LISREL (Jöreskog & Sörbom, 1993) are flexible enough to specify an absolute latent variable for
the absolute items and a relative latent variable for the relative items. The relative latent variable is
then restricted in such a way that it becomes a within-group standardized rescaling of the absolute
latent variable. This requires that the relative latent variable correlates perfectly with the absolute
latent variable within groups and that it has a mean of zero and a variance of one within each of
the groups. To provide a within-group correlation of one between the absolute and relative latent
variable, the covariance matrix of these latent variables must be subjected to nonlinear restrictions.
Furthermore, the mean and variance of the relative latent variable are fixed at zero and one, re-
spectively, and specified to be invariant across groups. The between-group differences in means
and variances for the absolute latent variable, however, are freely estimated. Then one subjects the
entire model to a test for strict factorial invariance (Meredith, 1993) to test for relative measurement
invariance. The formal details of this model are outlined in the appendix. This is an elegant proce-
dure for fitting the relative model and a useful extension of the SEM framework. To the authors’
knowledge, widely available IRT software does not allow the required restrictions to be imposed.
For dichotomous item responses, this approach can therefore only be taken indirectly through the
analysis of tetrachoric correlations with SEM programs.

Illustration 1

Some of the ideas and procedures set forth in this article will be illustrated by analyzing a Dutch
version of the Personality Research Form-E (PRF-E), a widely used personality questionnaire
due to Jackson (1974). The PRF-E was administered to 157 male and 279 female undergraduate
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psychology students. Absolute and relative measurement invariance will be assessed with respect
to sex.

A nice property of the concept of relative measurement invariance is that it is possible to do
a quick scan of a scale to see whether it may contain items for relative measurement—which is
difficult with absolute measurement invariance. The reason for this is that the restrictions of relative
measurement invariance imply that the p values of relative items are equal across groups. So, if a
scale consists of a number of items with unequal p values across groups, but there is also a set of
items with equal p values, this may indicate that the items with equal p values are items for relative
measurement of the trait in question.

Several scales in the PRF-E showed this pattern, but it is most pronounced in the subscale
Impulsivity. Because this analysis is a mere illustration of some of the ideas presented in this
article, the present analysis is limited to this scale. The pattern of p values for males and females
is shown in Table 1.

Table 1
p Values for the Items in the PRF-E Subscale Impulsivity

Item p (males) p (females)

1. Often I stop in the middle of one activity in order to start something else. .64 .62
2. I often say the first thing that comes into my head. .50 .63
3. When I go to a store, I often come home with things I had not intended

to buy. .42 .58
4. Many of my actions seem to be hasty. .47 .46
5. I have often broken things because of carelessness. .50 .47
6. Most people feel that I act impulsively. .41 .45
7. Sometimes I get several projects started at once because I don’t think

ahead. .59 .59
8. I find that thinking things over very carefully often destroys half the

fun of doing them. .44 .56
9. I am careful to consider all sides of an issue before taking action. .52 .64

10. I am pretty cautious. .31 .34
11. Rarely, if ever, do I do anything reckless. .71 .71
12. Emotion seldom causes me to act without thinking. .41 .66
13. I have a reserved and cautious attitude toward life. .32 .46
14. My thinking is usually careful and purposeful. .36 .60
15. I am not one of those people who blurt things out without thinking. .46 .61
16. I generally rely on careful reasoning in making up my mind. .31 .45
Note. Negative items (Items 9 to 16) have been recoded so that all p values represent the proportion of
indicative responses. Note. PRF-E = Personality Research Form-E.

These results suggest the existence of relative and absolute items in the scale. The Items 1, 4,
5, 6, 7, 10, and 11 show almost identical p values for males and females, which may indicate
relative measurement. On the other hand, Items 2, 3, 8, 9, 12, 13, 14, 15, and 16 show higher
p values for females, which may indicate a sex difference in latent trait distributions—females
being more impulsive. This can be checked by applying the logistic regression procedure. The
items hypothesized to be items for absolute measurement are combined in a subscale, generating
an absolute total score. This sum score is then standardized within each group to generate a relative
score. Subsequently, the amount of DIF for each item is evaluated with respect to the absolute score
(to detect absolute DIF), and the relative score (to detect relative DIF) by assessing the effect of sex
on the item response. The results yielded by this procedure are reported in Table 2. Only the results
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concerning uniform DIF are reported, because none of the items showed nonuniform absolute or
relative DIF.

Table 2
Standardized Parameter Estimates for the Effect of

Sex in the Logistic Regression Procedure

Absolute Bias: Effect of Sex Relative Bias: Effect of Sex
Item (standardized parameter estimate) (standardized parameter estimate)

1 −1.33 −0.29
2 −0.59 3.04
3 0.82 3.48
4 −3.15 0.43
5 −1.95 0.58
6 −2.12 0.63
7 −2.83 −0.13
8 −0.21 2.45
9 0.65 2.85

10 −1.85 0.63
11 −2.13 −0.05
12 10.03 5.65
13 −0.55 2.85
14 1.37 5.56
15 −0.65 3.18
16 −0.79 3.13

Note. A positive parameter estimate indicates that females have a higher probability
of an indicative answer, conditional on their absolute/relative score.

The results are in line with the initial hypothesis. The items hypothesized to be items for relative
measurement conform to the idea that they measure relative to the other items in the scale, consis-
tently showing absolute but no relative DIF. An exception is item 1, showing neither absolute nor
relative DIF. The theoretical impossibility of such a result, given the difference in absolute score
distributions, implies that this is due to a lack of power. The absolute items also behave as expected,
consistently showing relative DIF but no absolute DIF, except for Item 12. This item shows both
absolute and relative DIF—presumably caused by the explicit use of the word emotion—and should
probably be removed.

Of course, these results should be interpreted with some caution; although the items do behave
as relative items, inspection of the content of the items does not yield obvious reasons why this
should be so. Further research should give more insight into the item features that trigger relative
measurement. A research strategy that could give some insight in the response processes involved
would be to present the items with and without explicit instructions for comparison. So, items could
be administered with the instruction to compare oneself to a fixed reference group (e.g., males),
with the instruction to compare oneself to a variable reference group (e.g., the group to which one
belongs), and without any instruction at all. Comparing ICCs across these situations should provide
information on the relevant response processes, which would in turn strengthen the validity of this
and other personality scales.

Illustration 2

As mentioned, the concepts of absolute and relative measurement invariance generalize to other
latent variable models such as the congeneric model often used in SEM. To illustrate the approach
for the SEM model, a subset of data collected by Rodriguez Mosquera, Manstead, and Fischer (in
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press) is used. They constructed scales to measure several types of honor concerns. A total of 61
male and 61 female Dutch undergraduate psychology students completed the scales. A subset of
items of a scale called Feminine Honor Concerns is analyzed, and measurement invariance with
respect to sex is evaluated. The items request the participant to rate, on a 7-point scale, how bad
he or she would feel if the descriptions given in the items applied to him or her. The content of the
items is given in Table 3 along with the means and standard deviations for both sexes.

Table 3
Means and Standard Deviations for Males (n = 61) and Females

(n = 61) on Items in the Scale for Feminine Honor Concerns

Item Content: “How bad would you feel if the Mean (SD) Mean (SD)
following description applied to you?” for Males for Females

1. Wearing provocative clothes 2.10 (1.14) 2.16 (1.39)
2. Sleeping with someone without starting a serious 2.48 (1.63) 2.77 (1.42)

relationship with that person
3. Changing partner often 2.82 (1.38) 3.44 (1.32)
4. Being known as having different sexual contacts 2.77 (1.57) 3.90 (1.38)

A unidimensional model with strict factorial invariance constraints across groups (Meredith,
1993) was fitted to test for measurement invariance. Although the model cannot be rejected, χ 2 (14)
= 21.77, p = .08, overall fit is not satisfactory (RMSEA = .08), and inspection of modification
indices suggests the presence of DIF. Likelihood ratio tests, conducted by individually freeing
intercept parameters, reveal uniform bias for item 2, χ 2 (1) = 6.85, p < .05, and for item 4, χ 2 (1)
= 7.00, p < .05.

As can be seen from Table 3, however, the observed means of Items 1 and 2 are almost equal
across groups. The content of the items “wearing provocative clothes” and “sleeping with someone
without starting a serious relationship with that person” suggest that these items may be interpreted
differently by men and women. It is not implausible that participants interpret the content of the
items conditional on their sex. If this is the case, it implies that these items may be treated as relative
within-group indicators. A model specifying these items as relative indicators was fitted by using
the SEM procedure described in the previous section (see the appendix for the technical details).
A graphical representation of the model is given in Figure 4.

The model cannot be rejected, χ 2 (14) = 15.84, p = .32, and fits the data very well (RMSEA <
.01). In accordance with these results, inspection of modification indices does not reveal substantial
misfit anywhere in the model. Given the fact that the number of parameters in the model is equal
to the number of parameters in the absolute model with strict factorial invariance, the better fit of
the relative model suggests that this model should be preferred. This may indicate that Items 1 and
2 do indeed measure relative to Items 3 and 4, which may teach us more about the structure of
honor concerns in male and female populations. This, in turn, may provide valuable information
for theory development in this area.

Discussion

The theory and research presented in this article provide some insight into the complicated
relation between measurement invariance and construct validity. It has been argued that not all items
that show DIF in the classical sense are invalid. Rather, a failure to distinguish between absolute
and relative forms of measurement will lead to apparent bias of items for relative measurement.
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Figure 4
A Structural Equation Model for Relative Measurement
for an Item With Both Absolute Bias and Relative Bias
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on the absolute factor. The relative factor is obtained by standardization

within groups and correlates unity with the absolute factor.

Items for relative measurement can be valid indicators of a trait within groups, but because of their
relative nature, these items are bound to produce bias as defined in the classical sense. If the relative
nature of the items is recognized, they do not have to be eliminated from a test. Instead, they can
be used as relative indicators of the trait in question.

The distinction between absolute and relative measurement has some implications for the theory
of measurement invariance and bias. If the latent trait distribution differs across groups, an item
will show either absolute bias, relative bias, or both: Absolute measurement invariance and relative
measurement invariance cannot simultaneously hold, unless the trait distributions are identical. If
the trait distributions differ, relative measurement invariance of a given item will cause that item
to show absolute bias. Bias in the classical sense can therefore result from relative measurement
invariance. This is an intriguing result because it contradicts the view that all bias results from
multidimensionality.

The relation between bias and multidimensionality should be constructed as follows. Bias is a
group difference in the distribution of item responses conditional on the latent trait. Multidimen-
sionality is a possible explanation for the presence of bias. Now, it is sometimes suggested that
bias is multidimensionality because a biased item “measures” group membership in addition to
the variable of interest. So, in a very general sense, group membership is then conceived of as the
second dimension. This line of reasoning may be maintained, but in this case multidimensionality
is no longer an explanation of item bias: Such an explanation would be circular because the group
difference is exactly the phenomenon that requires an explanation. Thus, in this line of reasoning,
all bias is multidimensionality, all multidimensionality is bias, and there does not seem to be a
good reason for entertaining two words for the same concept. As a consequence, either of the terms
should be dropped from the psychometric vocabulary. We do not endorse such a point of view
and take the relation between multidimensionality and bias to be of an explanatory nature. This
implies that the second variable that the item measures in addition to the intended trait must be a
variable that is distinct from group membership, although it must in some way be related to group
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membership (otherwise the variable could not influence the item responses differentially). The most
sophisticated theory of the relation between this second variable and bias is the theory presented
in Shealy and Stout (1993). Shealy and Stout showed that a second variable could produce bias, if
the groups differ in the distribution on this variable. In their theory of multidimensionality, group
differences in the distribution of the second trait are therefore a necessary condition for bias to occur
(Shealy & Stout, 1993, p. 209 ff.). In other words, there has to be some association between this
second trait and group membership. However, this is obviously not the case in relative measure-
ment, because the distribution on a relative latent variable will often not be associated with group
membership—for example, if the absolute trait distributions are normal. In view of this problem,
there are two ways to proceed. Either Shealy and Stout’s theory has to be revised to accommodate
for the relative position on the measured variable as a second dimension producing bias or it must be
concluded that relative measurement does not imply multidimensionality. The first of these options
requires that, for example, absolute height and relative height be two different traits. In our view,
this would render the concept of multidimensionality rather trivial. We therefore take the second
option and submit that relative measurement invariance does not imply multidimensionality but
unidimensional measurement of the intended trait within groups. We conclude that not all bias
results from multidimensionality.

A failure to recognize the fact that items provide relative measurement may produce distortions
in the interpretation of data. For instance, in personality research, researchers obviously assume that
the items in a personality scale are items for absolute measurement. This assumption is, however,
not self-evident. If the assumption is not fulfilled, this may lead to incorrect conclusions regarding
personality differences between groups. This is a direct result from the fact that absence of impact
cannot be distinguished from relative measurement invariance without a substantial number of
absolute items or a separate criterion. Consider, for example, an assertiveness scale in which most or
all items are actually items for relative measurement (i.e., the item responses result from an explicit
or implicit comparison of participants with other members of a relevant group). A psychologist
obtains responses from American and Japanese participants. Suppose that the American participants
are in fact more assertive than the Japanese. What would happen if he started looking for an effect
of nationality on assertiveness? He would never find any, because both groups answer the items
by comparing themselves to their own reference group, which automatically results in comparable
mean scores on the test. This is not an academic point, because virtually nothing is known about
the cognitive processes involved in responses to personality items. Whether this kind of distortion
occurs, and if so, how grave its consequences are, is of course a question for empirical research.
Nevertheless, research in this area may profit from taking the relative nature of items in personality
scales into account. An interesting line of research would consist in assessing absolute and relative
measurement invariance of personality items with respect to a behaviorally inspired matching
criterion. Such research, of course, requires the evaluation of tests at the item level. In this respect,
the advantages of the generalized item response theory models (Mellenbergh, 1994) over classical
test theory cannot be overemphasized.

The concept of relative measurement invariance could further be applied in a range of other
situations. One could, for example, think of cross-cultural research into subjective well-being or
happiness: It is not unlikely that people, in responding to items used in these scales, compare
themselves with other people in their environment. I may consider myself depressed compared
with the people around me, but if I get really depressed and I am admitted for hospitalization, I
may consider myself rather happy compared with the people surrounding me there. Concepts such
as satisfaction and happiness do seem to have an inherently relative component and are therefore
susceptible to relative measurement.
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In sum, items with relative measurement invariance but absolute bias are not multidimensional
and may be valid within-group indicators of the construct to be measured. Also, the fact that such
items occur may lead to theory formation on item response processes outside the cognitive realm.
The question then becomes what the practical implications of these findings are, and how they
could be of help in practical situations. Should we drastically change the way we make personality
tests? Should we be telling participants not to make within-group comparisons? In our opinion, no
definitive answers to these questions can, at present, be given. How often the response processes
outlined here occur and which item features and person characteristics trigger these processes
are questions open to empirical research. Obviously, however, the relation between item response
models and item response processes is not clear in domains outside cognitive testing. Within the
field of cognitive testing, there is at least a raw image of the response processes that lead to item
responses, and to a certain extent these processes have been successfully modeled (see Embretson,
1994, for a good example). Retaining items with relative measurement invariance in cognitive tests
does not seem to be a very good idea, for there is little theoretical foundation for such practice.
In fact, selecting items with relative measurement would technically be comparable to the item
selection rules specified in the Golden Rule Settlement (McAllister, 1993), where the Educational
Testing Service agreed to construct tests by giving priority to items showing the least differences
between groups. Most psychometricians would agree that this was not a psychometrically sound
basis for item selection, because it was based on the presumption that all group differences in
the performance on these tests reflect bias. The main reason why retaining items with absolute
bias in cognitive tests is not a very good idea, however, is precisely because relative measurement
invariance conflicts with the construct definitions. Indeed, if one approaches such items from the
perspective of cognitive processes in problem solving, the nature of these processes suggests,
or even prescribes, that absolute measurement invariance should hold. This is in sharp contrast
with construct definitions and response processes outside the realm of cognitive testing. In fact,
it seems somewhat disturbing that the demands of measurement invariance are often generalized
to the measurement of personality traits and attitudes, whereas this article clearly shows how a
rather simple, and not implausible, response process would destroy measurement invariance in the
classical sense. Coupled with the fact that in many research areas, there is very little theory on
what happens between item administration and item response, relative measurement invariance
may be an important concept, although we cannot, at present, determine its scope or usefulness in
practical situations. However, we can safely conclude that the relation between construct validity
and measurement invariance is rather intricate, because items without measurement invariance
may very well be valid indicators of the construct in question. Therefore, the relation between
measurement invariance and construct validity needs to be reconsidered, and theory formation on
this subject is called for. Especially, the need to extend the work of Embretson (1994), on the
relation between cognitive theories on response processes and latent trait models, to fields other
than cognitive testing, seems pertinent.

Appendix

A Relative Modification of the Structural Equation Model

Evaluating measurement invariance for continuous item responses requires testing the strict
factorial invariance model of Meredith (1993). This involves the modeling of mean structures
through multigroup analysis (Sörbom, 1974). Strict factorial invariance with respect to a selection



D. BORSBOOM, G. J. MELLENBERGH, and J. VAN HEERDEN
DIFFERENT KINDS OF DIF 449

variable V (here V is taken to indicate group) holds if

yv = τττ +�α�α�αv (A1)

and

   v =�!�!�!v���
′ +""", (A2)

where the vector yv is a vector of means on observed variables in group v, τττ is a vector of intercepts,
��� is the matrix of factor loadings, αααv is the vector of factor means for group v,   v is the covariance
matrix of the observed variables in group v,!!!v is the covariance matrix of the factors in group v,
and""" is a diagonal matrix containing the variances of the residuals. The strict factorial invariance
model specifies that only the factor means and variances may differ between groups.

A simple unidimensional model with one latent variable is taken as the point of departure. This
renders αααv and !!!v scalars. The model is identified by setting one of the elements in ��� to one and
the factor mean αααv to zero in one of the groups; αααv is free to vary in the other groups. This is the
unidimensional model fitted to the data in Illustration 2.

To cope with relative items, the model is modified as follows. Partition the observed variables
into a set of absolute items and a set of relative items. For the absolute items, the strict factorial
invariance model is maintained as above. The original single factor is termed the absolute factor.
For the relative items, a new factor is now invoked, so that αααv is now a 1 × 2 vector and!!!v a 2 ×
2 symmetric matrix. The relative items are allowed to load only on this second factor. This factor
is termed the relative factor. To ensure that the relative factor is the within-group standardized
variant of the absolute factor, the following restrictions are added to the model. First, the relative
factor is required to have the standard normal distribution in each group. Second, the relative factor
is required to correlate unity with the absolute factor within each of the groups. This gives the
restrictions

ααα = [αv 0] (A3)

and

!!!v =
[
φv√
φv 1

]
. (A4)

Equation A4 is a nonlinear restriction that can be readily implemented in SEM programs such as
LISREL (Jöreskog & Sörbom, 1993). However, admissibility checks should be turned off because
!!! is not positive definite. Equation A4 ensures that the correlation r12 between the absolute and the
relative factor is equal to r12 = φ12/

√
φ1 × φ2 = √

φv/
√
φv × 1 = 1, as required. The model with

Restrictions 3 and 4 is the relative model fitted to the data in Illustration 2.
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